
Project: Innovative Open Source Courses for Computer Science

Mobile Application Development
Teaching Material

Radosław Maciaszczyk
West Pomeranian University of Technology in Szczecin

30.05.2021

Innovative Open Source Courses for Computer Science

This teaching material was written as one of the outputs of the project “Innova-
tive Open Source Courses for Computer Science”, funded by the Erasmus+ grant
no. 2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian
University of Technology in Szczecin (Poland) and is implemented in partnership
withMendel University in Brno (Czech Republic) and University of Žilina (Slovak
Republic). The project implementation timeline is September 2019 to December
2022.

Project information
Project was implemented under the Erasmus+.
Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564
Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action Type: KA203 – Strategic Partnerships for higher education

Consortium
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNE
ZILINSKA UNIVERZITA V ZILINE

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication
reflects the views only of the author, and the Commission cannot be held responsible for any use
which may be made of the information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019–2022. The content is Copyrighted and
distributed under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA
4.0).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MOBILE APPLICATION DEVELOPMENT
Introduction

Innovative Open Source courses for Computer Science

30.05.2021

1/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is mobile device

2/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is mobile device

Main differences ?
CPU
Battery

Sensors
Connectivity

2/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is mobile device

Main differences ?
CPU
Battery
Sensors

Connectivity

2/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is mobile device

Main differences ?
CPU
Battery
Sensors
Connectivity

2/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What do you expect from a mobile devices

??

Hom many devices do you have
In future - one device many applications
In future no NOW

3/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What do you expect from a mobile devices

??
Hom many devices do you have

In future - one device many applications
In future no NOW

3/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What do you expect from a mobile devices

??
Hom many devices do you have
In future - one device many applications

In future no NOW

3/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What do you expect from a mobile devices

??
Hom many devices do you have
In future - one device many applications
In future no NOW

3/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Device for Developers

http://pl.scribd.com/doc/98309084/
Fusing-Sensors-Into-Mobile-OSes-Innovative-Use-Cases-Submitted-5-23-12

4/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

http://pl.scribd.com/doc/98309084/Fusing-Sensors-Into-Mobile-OSes-Innovative-Use-Cases-Submitted-5-23-12
http://pl.scribd.com/doc/98309084/Fusing-Sensors-Into-Mobile-OSes-Innovative-Use-Cases-Submitted-5-23-12

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main vendors

May 2021 -
gs.statcounter.com/vendor-market-share/mobile
Samsung 27,84 %
Apple 26,47 %
Xioami 10,62 %
Huawei 8,85 %
Oppo 5,39 %

5/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

gs.statcounter.com/vendor-market-share/mobile

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mobile operating system

May 2021 - gs.statcounter.com/os-market-share/
mobile/worldwide
Android 72,72 %
iOS 26,47 %
Samsung 0,4 %
KaiOS 0,17 %
Unknown 0,17 %

6/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

gs.statcounter.com/os-market-share/mobile/worldwide
gs.statcounter.com/os-market-share/mobile/worldwide

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is Android?

An open source software stack that includes
Operating system
Middleware
Key mobile applications (Web browser, PIM, SMS, Email…)
API libraries for writing mobile applications

Open-source development platform for creating mobile
applications
Linux based operating system
Generally for touchscreen mobile devices such as smartphones
and tablet computers

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where is Android

Phones
Tablets
TVs
STB - set-top-box
robots
will be in cars
will be in flight entertainment systems on planes
Android is everywhere !

8/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Android Software Stack

9/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application Fundamentals

Android applications are written in the Java or Kotlin
programming language. - Generally
The Android SDK tools compile the code (along with any
data and resource files) into an Android package, an archive
file with an .apk suffix
All the code in a single .apk file is considered to be one
application and is the file that Android-powered devices use to
install the application.

10/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application Fundamentals

Android applications are written in the Java or Kotlin
programming language. - Generally
The Android SDK tools compile the code (along with any
data and resource files) into an Android package, an archive
file with an .apk suffix
All the code in a single .apk file is considered to be one
application and is the file that Android-powered devices use to
install the application.

10/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application Fundamentals

Android applications are written in the Java or Kotlin
programming language. - Generally
The Android SDK tools compile the code (along with any
data and resource files) into an Android package, an archive
file with an .apk suffix
All the code in a single .apk file is considered to be one
application and is the file that Android-powered devices use to
install the application.

10/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Android application

Android application lives in its own security sandbox,
Andorid OS is multi-user Linux system,
Each application is a different user, (by default)
Each process has its own virtual machine (VM)
By default, every application runs in its own Linux process.
Android starts the process when any of the application’s
components need to be executed
Shuts down the process when it’s no longer needed or when
the system must recover memory for other applications.

11/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Principle of least privilege”

Each application, by default, has access only to the
components that it requires to do its work and no more.
An application cannot access parts of the system for which it
is not given permission
Question: How share data with other applications ?

12/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Share data with other applications

Share the same Linux user ID, in which case they are able to
access each other’s files
Create or use Content Provider
Store data on SDCard
Important: An application can request permission to access
device data such as: the user’s contacts, SMS messages, the
mountable storage (SD card), camera, Bluetooth, and more

13/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Application Components

Four different types of application components. Each type serves a
distinct purpose and has a distinct lifecycle.

Activities
Services
Content providers
Broadcast receivers

14/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Activity

Represents a single screen with a user interface
Multi activities in one app
All activity has own lifecycle
An activity is implemented as a subclass of Activity
eg. Mail app: read mail, compose mail...

15/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Service

Service runs in the background to perform long-running
operations or to perform work for remote processes
service does not provide a user interface
has own lifecycle
e.g. Music app: service might play music in the background
while the user is in a different application

16/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Content providers

Content Provider manages a shared set of application data
Other apps can modify data, without knowledge of the
detailed architecture
It is also good practice to use content provider as internal
System Content Providers store information line Contact,
Photos, Video...

17/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Broadcast receivers

Mechanism to send or receive broadcast messages from the
Android system and other Android apps
Similar to ”publish-subscribe” design pattern
When send broadcast message other apps must subscribe this
type of message
There are many system messages e.g. System send message
after boot is completed, battery is low...

18/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intent

This is seperate mechanism which we use to runs three of the
four component types-activities, services, and broadcast
receivers
With intent me send informatio about action and data
Depending on the component, we define actions differently

19/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Manifest File

All information about compoment must exist in a
AndroidManifest.xml file
Especial we must publish information about main activity
We also must publish information about permission
Application requires
Declare the minimum API Level
Declare hardware and software features used or required
(camera, bluetooth services, or a multitouch screen etc)
API libraries (other than the Android framework APIs), such
as the Google Maps library.

20/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

AndroidManifest.xml

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest ... >
3 ^^I<uses-permission android:name="android.permission. ..."/>
4 <application android:icon="@drawable/app_icon.png" ... >
5 <activity android:name="com.example.project.ExampleActivity"
6 android:label="@string/example_label" ... >
7 </activity>
8 <service>
9 </service>
10 <receiver>
11 </receiver>
12 <provider>
13 </provider>
14 ...
15 </application>
16 </manifest>
17 ^^I

21/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Live Example - Hello World

22/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to Android Studio

https://www.youtube.com/watch?v=K2dodTXARqc
https://www.youtube.com/user/androiddevelopers/

23/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://www.youtube.com/watch?v=K2dodTXARqc
https://www.youtube.com/user/androiddevelopers/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Solutions for common Android development problems

http://www.vogella.com/articles/
AndroidDevelopmentProblems/article.html
http://d.android.com
http://stackoverflow.com/questions/tagged/android

24/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

http://www.vogella.com/articles/AndroidDevelopmentProblems/article.html
http://www.vogella.com/articles/AndroidDevelopmentProblems/article.html
http://d.android.com
http://stackoverflow.com/questions/tagged/android

MOBILE APPLICATION DEVELOPMENT
Component Lifecycle

Innovative Open Source courses for Computer Science

30.05.2021

1/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity

An Activity is a component that provides a screen with which
users can interact in order to do something
Each activity is given a window in which to draw its user
interface.
The window typically fills the screen, sometimes may be
smaller
An application consists of multiple activities that are loosely
bound to each other.

2/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Multiply Activities - how arrange

Each activity can then start another activity in order to
perform different actions.
Each time a new activity starts, the previous activity is
stopped, but the system preserves the activity in a stack (the
”back stack”).
When a new activity starts, it is pushed onto the back stack
and takes user focus.
The back stack is a basic ”last in, first out” stack mechanism

3/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Multiply Task - how arrange

When user start app first time or app is destroyed, the new
task is created.
When app exist, that application’s task comes to the
foreground

4/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Creating an Activity

To create an activity, you must create a subclass of Activity
(or an existing subclass of it)
Activity has seven callback methods
We must declare only one onCreate()
Other depends on the application requirements
Predictability activity depends on understanding the activity
lifecycle

5/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Implementing the lifecycle callbacks - skeleton

1 class NewActivity : AppCompatActivity() {
2 override fun onCreate(savedInstanceState: Bundle?) {
3 super.onCreate(savedInstanceState)
4 setContentView(R.layout.activity_new)
5 // The activity is being created.
6 }
7 override fun onPause() {
8 super.onPause()
9 // Another activity is taking focus (this activity is about to be "paused").
10 }
11 override fun onRestart() {
12 super.onRestart()
13 }
14 override fun onResume() {
15 super.onResume()
16 // The activity has become visible (it is now "resumed").
17 }
18 override fun onStart() {
19 super.onStart()
20 // The activity is about to become visible.
21 }
22 override fun onStop() {
23 super.onStop()
24 // The activity is no longer visible (it is now "stopped")
25 }
26 override fun onDestroy() {
27 super.onDestroy()
28 // The activity is about to be destroyed.
29 }
30 }

6/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onCreate()
Called when the activity is first
created. You should set up -
create views, bind data to lists,
and so on. This method is passed
a Bundle object containing the
activity’s previous state.
Always followed by onStart().

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onRestart()
Called after the activity has been
stopped, just prior to it being
started again.
Always followed by onStart().

onStart()
Called just before the activity
becomes visible to the user.
Followed by onResume() if the
activity comes to the foreground,
or onStop() if it becomes hidden.

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onResume()
Called just before the activity
starts interacting with the user.
At this point the activity is at the
top of the activity stack, with
user input going to it.
Always followed by onPause().

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onPause()
Called when the system is about
to start resuming another
activity. You should: commit
unsaved changes to persistent
data, stop animations and other
things that may be consuming
CPU, and so on. It shoulddo
whatever it does very quickly, the
next activity will not be resumed
until it returns.
Followed either by onResume() if
the activity returns back to the
front, or by onStop() if it
becomes invisible to the user.

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onStop()
Called when the activity is no
longer visible to the user. This
may happen because it is being
destroyed, or because another
activity (either an existing one or
a new one) has been resumed
and is covering it.
Followed either by onRestart() if
the activity is coming back to
interact with the user, or by
onDestroy() if this activity is
going away.

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Activity Lifecycle

onDestroy()
Called before the activity is
destroyed. This is the final call
that the activity will receive.

7/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

More information

https://developer.android.com/guide/components/
activities/activity-lifecycle

8/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

Saving Activity State
By default, the system uses the Bundle instance state to save
information about each View object in your activity layout,
but not save all information.
However, you can (and should)proactively retain the state of
your activities using onSaveInstanceState() method.
As your activity begins to stop, the system calls the
onSaveInstanceState()
This methods use key-value pairs to save state

1 override fun onSaveInstanceState(outState: Bundle?) {
2 // Save the user's current game state
3 outState?.run {
4 putInt(STATE_SCORE, currentScore)
5 putInt(STATE_LEVEL, currentLevel)
6 }
7
8 // Always call the superclass so it can save the view hierarchy state
9 super.onSaveInstanceState(outState)
10 }
11
12 companion object {
13 val STATE_SCORE = "playerScore"
14 val STATE_LEVEL = "playerLevel"
15 }

9/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Restore Activity State
You can use onCreate() or onRestoreInstanceState().
This methods receive the same Bundle that contains the
instance state information.

1 override fun onCreate(savedInstanceState: Bundle?) {
2 super.onCreate(savedInstanceState) // Always call the superclass first
3
4 // Check whether we're recreating a previously destroyed instance
5 if (savedInstanceState != null) {
6 with(savedInstanceState) {
7 // Restore value of members from saved state
8 currentScore = getInt(STATE_SCORE)
9 currentLevel = getInt(STATE_LEVEL)
10 }
11 } else {
12 // Probably initialize members with default values for a new instance
13 }
14 }

1 override fun onRestoreInstanceState(savedInstanceState: Bundle?) {
2 // Always call the superclass so it can restore the view hierarchy
3 super.onRestoreInstanceState(savedInstanceState)
4
5 // Restore state members from saved instance
6 savedInstanceState?.run {
7 currentScore = getInt(STATE_SCORE)
8 currentLevel = getInt(STATE_LEVEL)
9 }
10 }

10/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Live Example - Android LifeCycle

11/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Navigating between activities

To start activity we can use two methods startActivity() or
startActivityForResult()
This methods require Intent object wich contains information
about Activity

Explicit
1 val intent = Intent(this, OtherActivity::class.java)
2 startActivity(intent)

Implicit
1 val intent = Intent(Intent.ACTION_SEND).apply {
2 putExtra(Intent.EXTRA_EMAIL, recipientArray)
3 }
4 startActivity(intent)

12/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Start activity and waiting for Result [1/2]

When we need receive result we must use
startActivityForResult()
Impement this methods we must add code inside two activity

First Activity - Fire second Activity
1 companion object {
2 const val REQUEST_CODE = 67 //declare request code
3 }
4 fun activityCall() {
5 val intent = Intent(this, OtherActivity::class.java)
6 startActivityForResult(intent,REQUEST_CODE)
7 }

Implement Receive methods
1 override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {
2 super.onActivityResult(requestCode, resultCode, data)
3 // Check which request we're responding to
4 if (requestCode == REQUEST_CODE) {
5 // Make sure the request was successful
6 if (resultCode == Activity.RESULT_OK) {
7 // Do something with the data here
8 }
9 }
10 }

13/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Start activity and waiting for Result [2/2]

Send data from Second Activity
1 fun responseButton(view: View){
2 Log.i(TAG, "responseButton")
3 val returnIntent = Intent()
4 returnIntent.putExtra("result", "data from secondActivity")
5
6 setResult(RESULT_OK, returnIntent)
7 finish()
8 }

14/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Intent

Starting an activity
Starting a service
Delivering a broadcast
Explicit Intent - specify which application will satisfy the
intent
Implicit Intent - do not name a specific component, but
instead declare a general action to perform

15/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Building an intent

Building the Intent object we specify
Component name - only Explicit Intent
Action - A string that specifies the generic action to perform,
system Action or own Action
Data - URI object
Category - additional information about the kind of
component that should handle the intent
Extras - Key-value pairs that carry additional information
required to accomplish the requested action

16/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Standard System Action

ACTION_MAIN
ACTION_VIEW
ACTION_ATTACH_DATA
ACTION_EDIT
ACTION_PICK
ACTION_CHOOSER
ACTION_GET_CONTENT
ACTION_DIAL
ACTION_CALL
ACTION_SEND

ACTION_SENDTO
ACTION_ANSWER
ACTION_INSERT
ACTION_DELETE
ACTION_RUN
ACTION_SYNC
ACTION_PICK_ACTIVITY
ACTION_SEARCH
ACTION_WEB_SEARCH
ACTION_FACTORY_TEST

17/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Examples with data

ACTION_VIEW content://contacts/people/1 – Display
information about the person whose identifier is “1”.
ACTION_DIAL content://contacts/people/1 – Display
the phone dialer with the person filled in.
ACTION_EDIT content://contacts/people/1 – Edit
information about the person whose identifier is “1”.
ACTION_VIEW tel:123 – Display the phone dialer with the
given number filled in. Note how the VIEW action does what
what is considered the most reasonable thing for a particular
URI.
ACTION_DIAL tel:123 – Display the phone dialer with the
given number filled in.

18/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

content://contacts/people/1
content://contacts/people/1
content://contacts/people/1
tel:123
tel:123

Category

Gives additional information about the action to execute.
For example, CATEGORY_LAUNCHER means it should
appear in the Launcher as a top-level application.
CATEGORY_ALTERNATIVE means it should be included in
a list of alternative actions the user can perform on a piece of
data.
That is, if you include the categories
CATEGORY_LAUNCHER and CATEGORY_ALTERNATIVE,
then you will only resolve to components with an intent that
lists both of those categories.
Activities will very often need to support the
CATEGORY_DEFAULT so that they can be found by
Context.startActivity().
DEFAULT category is required for all filters - except for those
with the MAIN action and LAUNCHER category.

19/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Standard Categories

CATEGORY_DEFAULT
CATEGORY_BROWSABLE
CATEGORY_TAB
CATEGORY_ALTERNATIVE
CATEGORY_SELECTED_AL-
TERNATIVE
CATEGORY_LAUNCHER
CATEGORY_INFO
CATEGORY_APP_MARKET

CATEGORY_HOME
CATEGORY_PREFERENCE
CATEGORY_TEST
CATEGORY_CAR_DOCK
CATEGORY_DESK_DOCK
CATEGORY_LE_DESK_DOCK
CATEGORY_HE_DESK_DOCK
CATEGORY_CAR_MODE

20/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example code
Explicit Intent

1 val fileDownloadIntent = Intent(this, FileDownloadService::class.java).apply {
2 data = Uri.parse(fileUrl)
3 }
4 startService(fileDownloadIntent)

1 val intent = Intent(this, OtherActivity::class.java)
2 startActivity(intent)

Implicit Intent
1 val fileDownloadIntent = Intent(this, FileDownloadService::class.java).apply {
2 data = Uri.parse(fileUrl)
3 }
4 startService(fileDownloadIntent)

1
2 val sendIntent = Intent().apply {
3 action = Intent.ACTION_SEND
4 putExtra(Intent.EXTRA_TEXT, textMessage)
5 type = "text/plain"
6 }
7 // Try to invoke the intent.
8 try {
9 startActivity(sendIntent)
10 } catch (e: ActivityNotFoundException) {
11 // Define what your app should do if no activity can handle the intent.
12 }

21/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Forcing an app chooser

Using Implicit Intents user can select which app use (if more
than one)
User can seting default app for certain action
Using createChooser() we show the chooser, and e.g. send
data to other apps

1 //1. Define Intent
2 val sendIntent = Intent(Intent.ACTION_SEND)
3 // Always use string resources for UI text.
4 // This says something like "Share this photo with"
5 //2.Create title
6 val title: String = resources.getString(R.string.chooser_title)
7 //3. Create intent to show the chooser dialog
8 val chooser: Intent = Intent.createChooser(sendIntent, title)
9
10 //4. Verify the original intent will resolve to at least one activity
11 if (sendIntent.resolveActivity(packageManager) != null) {
12 startActivity(chooser)
13 }

22/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Receive Implicit Intnet
To receive implicit intent we must declare one or more intent
filters for each of your app components
The system delivers an implicit intent to your app component
only if the intent can pass through one of your intent filters.

1 <activity android:name="MainActivity">
2 <!-- This activity is the main entry, should appear in app launcher -->
3 <intent-filter>
4 <action android:name="android.intent.action.MAIN" />
5 <category android:name="android.intent.category.LAUNCHER" />
6 </intent-filter>
7 </activity>
8
9 <activity android:name="ShareActivity">
10 <!-- This activity handles "SEND" actions with text data -->
11 <intent-filter>
12 <action android:name="android.intent.action.SEND"/>
13 <category android:name="android.intent.category.DEFAULT"/>
14 <data android:mimeType="text/plain"/>
15 </intent-filter>
16 <!-- This activity also handles "SEND" and "SEND_MULTIPLE" with media data -->
17 <intent-filter>
18 <action android:name="android.intent.action.SEND"/>
19 <action android:name="android.intent.action.SEND_MULTIPLE"/>
20 <category android:name="android.intent.category.DEFAULT"/>
21 <data android:mimeType="application/vnd.google.panorama360+jpg"/>
22 <data android:mimeType="image/*"/>
23 <data android:mimeType="video/*"/>
24 </intent-filter>
25 </activity>

23/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

More information

https://developer.android.com/guide/components/
activities/activity-lifecycle
https://developer.android.com/guide/components/
intents-filters

24/24 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters

MOBILE APPLICATION DEVELOPMENT
Fragment - Lifecycle

Innovative Open Source courses for Computer Science

30.05.2021

1/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment

Represents a reusable portion of your app’s UI
Fragment defines and manages its own layout
Has its own lifecycle
Can handle its own input events
Fragment must be hosted by an activity or another fragment

2/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Create a fragment

Setup environment
Create a fragment class
Add a fragment to an activity

Add to project build.gradle information about Google Maven
repository

1 buildscript {
2 ...
3
4 repositories {
5 google()
6 ...
7 }
8 }
9

10 allprojects {
11 repositories {
12 google()
13 ...
14 }
15 }

3/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Create a fragment

Setup environment
Create a fragment class
Add a fragment to an activity

Add to app’s build.gradle information about AndroidX Fragment
library

1 dependencies {
2 val fragment_version = "1.3.4"
3
4 // Java language implementation
5 implementation("androidx.fragment:fragment:$fragment_version")
6 // Kotlin
7 implementation("androidx.fragment:fragment -ktx:$fragment_version")
8 }

3/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Create a fragment

Setup environment
Create a fragment class
Add a fragment to an activity

We can use Fragemnt, DialogFragment,
PreferenceFragmentCompat

1 class ExampleFragment : Fragment(R.layout.example_fragment)

3/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Create a fragment

Setup environment
Create a fragment class
Add a fragment to an activity

Define in XML, android:name containing a single class
1 <androidx.fragment.app.FragmentContainerView
2 xmlns:android="http://schemas.android.com/apk/res/android"
3 android:id="@+id/fragment_container_view"
4 android:layout_width="match_parent"
5 android:layout_height="match_parent"
6 android:name="com.example.ExampleFragment" />

3/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Create a fragment

Setup environment
Create a fragment class
Add a fragment to an activity

or (more offten) Define in XML container for fragment
1 <androidx.fragment.app.FragmentContainerView
2 xmlns:android="http://schemas.android.com/apk/res/android"
3 android:id="@+id/fragment_container_view"
4 android:layout_width="match_parent"
5 android:layout_height="match_parent" />

Add code to activity (onCreate())
1 supportFragmentManager.commit {
2 setReorderingAllowed(true)
3 add<ExampleFragment >(R.id.fragment_container_view)

3/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment lifecycle

Each Fragment instance has its own lifecycle
View lifecycle is difrent than Fragment lifecycle
Fragment state:

INITIALIZED
CREATED
STARTED
RESUMED
DESTROYED

4/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

CREATED
It has been added to a
FragmentManager and the
onAttach() method has already
been called.
The fragment’s view Lifecycle is
created only when your Fragment
provides a valid View instance.
You can also override
onCreateView() to
programmatically inflate or
create your fragment’s view.

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

STARTED
This state guarantees that the
fragment’s view is available, if
one was created, and that it is
safe to perform a
FragmentTransaction on the
child FragmentManager of the
fragment.

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

RESUMED
When the fragment is visible, all
Animator and Transition effects
have finished, and the fragment
is ready for user interaction

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

STARTED
As the user begins to leave the
fragment, and while the fragment
is still visible, the Lifecycles for
the fragment and for its view are
moved back to the STARTED
state

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

CREATED
Once the fragment is no longer
visible, the Lifecycles for the
fragment and for its view are
moved into the CREATED state
Followed either by onResume() if
the activity returns back to the
front, or by onStop() if it
becomes invisible to the user.

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Fragment Lifecycle

DESTROYED
The fragment is removed, or if
the FragmentManager is
destroyed

5/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Lifecycle Methods - to resumed state (interacting with the
user)

onAttach - called once the fragment is associated with its
activity.
onCreate - called to do initial creation of the fragment.
onCreateView - creates and returns the view hierarchy
associated with the fragment.
onActivityCreated - tells the fragment that its activity has
completed its own android.app.Activity-onCreate.
onViewStateRestored - tells the fragment that all of the saved
state of its view hierarchy has been restored.
onStart - makes the fragment visible to the user (based on its
containing activity being started).
onResume - makes the fragment begin interacting with the
user (based on its containing activity being resumed).

6/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

onPause - fragment is no longer interacting with the user
either because its activity is being paused or a fragment
operation is modifying it in the activity.
onStop - fragment is no longer visible to the user either
because its activity is being stopped or a fragment operation
is modifying it in the activity.
onDestroyView - allows the fragment to clean up resources
associated with its View.
onDestroy - called to do final cleanup of the fragment’s state.
onDetach - called immediately prior to the fragment no longer
being associated with its activity.

7/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Service

An application component that can perform long-running
operations in the background
Not provide a user interface
Extending the Service class
You must declare all services in your application’s manifest file

8/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Types of Services

Foreground
Background
Bound

A foreground service performs some operation that is
noticeable to the user
Foreground services must display a Notification
This notification cannot be dismissed unless the service is
either stopped or removed
Continue running even when the user isn’t interacting with
the app

9/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Types of Services

Foreground
Background
Bound

A background service performs an operation that isn’t directly
noticed by the user
e.g. compact storage
API 26 or higher - restrictions on running background services
when the app itself isn’t in the foreground, you shouldn’t
access location information from the background

9/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Types of Services

Foreground
Background
Bound

A bound service offers a client-server interface that allows
components to interact with the service, send requests,
receive results, and even do so across processes with
interprocess communication (IPC
Runs only as long as another application component is bound
to it.
Multiple components can bind to the service at once, but
when all of them unbind, the service is destroyed.

9/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

More information

https://developer.android.com/guide/fragments
https:
//developer.android.com/guide/fragments/lifecycle

10/10 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/guide/fragments
https://developer.android.com/guide/fragments/lifecycle
https://developer.android.com/guide/fragments/lifecycle

MOBILE APPLICATION DEVELOPMENT
User Interface

Innovative Open Source courses for Computer Science

30.05.2021

1/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

User Interface

UI
Your app’s user interface is everything that the user can see and
interact with. Android provides a variety of pre-built UI
components such as structured layout objects and UI controls
that allow you to build the graphical user interface for your app.
Android also provides other UI modules for special interfaces such
as dialogs, notifications, and menus.

2/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Layouts

Layouts
Defines the structure for a user interface in your app, such as in an
activity. All elements in the layout are built using a hierarchy of
View and ViewGroup objects.

3/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Declare Layouts

You can declare a layout in two ways:
Declare UI elements in XML. - Android provides a
straightforward XML vocabulary that corresponds to the View
classes and subclasses, such as those for widgets and layouts.
You can also use Android Studio’s Layout Editor to build your
XML layout using a drag-and-drop interface.
Instantiate layout elements at runtime. Your app can
create View and ViewGroup objects (and manipulate their
properties) programmatically.

4/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Define layouts in XML files

Declaring your UI in XML allows you to separate the
presentation of your app from the code that controls its
behavior.
View - usually called ”widgets” and can be one of many
subclasses, such as Button or TextView
ViewGroup - usually called ”layouts” can be one of many
types that provide a different layout structure, such as
LinearLayout or ConstraintLayout
To debug your layout at runtime, use the Layout Inspector
tool. https://developer.android.com/studio/debug/
layout-inspector

5/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/studio/debug/layout-inspector
https://developer.android.com/studio/debug/layout-inspector

Example XML

1 <?xml version="1.0" encoding="utf-8"?>
2 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent"
5 android:orientation="vertical" >
6 <TextView android:id="@+id/text"
7 android:layout_width="wrap_content"
8 android:layout_height="wrap_content"
9 android:text="Hello, I am a TextView" />
10 <Button android:id="@+id/button"
11 android:layout_width="wrap_content"
12 android:layout_height="wrap_content"
13 android:text="Hello, I am a Button" />
14 </LinearLayout>

Each layout file must contain exactly one root element, which
must be a View or ViewGroup object (ex LinearLayout)
All layout we store in res/layout/
Android support different screen sizes

6/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Diffrent screen sizes

1 res/layout/main_activity.xml # For handsets
2 res/layout-land/main_activity.xml # For handsets in landscape
3 res/layout-sw600dp/main_activity.xml # For 7 inch tablets
4 res/layout-sw600dp-land/main_activity.xml # For 7 inch tablets in landscape

You can provide screen-specific layouts by creating additional
res/layout/ directories—one for each screen configuration
that requires a different layout
Use the available width qualifier (e.g. sw600dp - screen with
600dp)
Use orientation qualifiers (e.g. land or port - layouts for
portrait or landscape respectively)

7/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Type of Layouts I

Linear Layout - is a view group that aligns all children in a
single direction, vertically or horizontally.
Relative Layout - is a view group that displays child views in
relative positions.
Constraint Layout -is a view to create large and complex
layouts with a flat view hierarchy (no nested view groups). It’s
similar to RelativeLayout in that all views are laid out
according to relationships between sibling views and the
parent layout, but it’s more flexible than RelativeLayout
Table Layout - is a view that groups views into rows and
columns.
Absolute Layout - enables you to specify the exact location of
its children.
Frame Layout - is a placeholder on screen that you can use to
display a single view.

8/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Type of Layouts II

List View - ListView is a view group that displays a list of
scrollable items. (Layouts with an Adapter)
Grid View - GridView is a ViewGroup that displays items in a
two-dimensional, scrollable grid. (Layouts with an Adapter)
https://www.tutorialspoint.com/android/android_
user_interface_layouts.htm

9/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://www.tutorialspoint.com/android/android_user_interface_layouts.htm
https://www.tutorialspoint.com/android/android_user_interface_layouts.htm

Layout Attributes - Common I

android : id - This is the ID which uniquely identifies the view.
android : layout_width - This is the width of the layout.
android : layout_height - This is the height of the layout
android : layout_marginTop - This is the extra space on the
top side of the layout.
android : layout_marginBottom - This is the extra space on
the bottom side of the layout.
android : layout_marginLeft - This is the extra space on the
left side of the layout.
android : layout_marginRight - This is the extra space on the
right side of the layout.
android : layout_gravity - This specifies how child Views are
positioned.

10/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Layout Attributes - Common II

android : layout_weight - This specifies how much of the
extra space in the layout should be allocated to the View.
android : layout_x - This specifies the x-coordinate of the
layout.
android : layout_y - This specifies the y-coordinate of the
layout.
android : layout_width - This is the width of the layout.
android : paddingLeft - This is the left padding filled for the
layout.
android : paddingRight - This is the right padding filled for
the layout.
android : paddingTop - This is the top padding filled for the
layout.
android : paddingBottom - This is the bottom padding filled
for the layout.

11/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ConstraintLayout

A ConstraintLayout is a android.view.ViewGroup which
allows you to position and size widgets in a flexible way.
There are currently various types of constraints that you can
use:

Relative positioning
Margins
Centering positioning
Circular positioning
Visibility behavior
Dimension constraints
Chains
Virtual Helpers objects
Optimizer

https://developer.android.com/reference/androidx/
constraintlayout/widget/ConstraintLayout

12/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout

Relative positioning

Those constraints allow you to position a given widget relative
to another one.
You can constrain a widget on the horizontal and vertical axis:

Horizontal Axis: left, right, start and end sides
Vertical Axis: top, bottom sides and text baseline

The general concept is to constrain a given side of a widget to
another side of any other widget.
They all take a reference id to another widget, or the parent
(which will reference the parent container, i.e. the
ConstraintLayout)

13/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Relative positioning - example

1 <Button android:id="@+id/buttonA" ... />
2 <Button android:id="@+id/buttonB" ...
3 app:layout_constraintLeft_toRightOf="@+id/buttonA" />

1 <Button android:id="@+id/buttonB" ...
2 app:layout_constraintLeft_toLeftOf="parent" />

14/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Available constraints

layout_constraintLeft_toLeftOf
layout_constraintLeft_toRightOf
layout_constraintRight_toLeftOf
layout_constraintRight_toRightOf
layout_constraintTop_toTopOf
layout_constraintTop_toBottomOf
layout_constraintBottom_toTopOf
layout_constraintBottom_toBottomOf
layout_constraintBaseline_toBaselineOf
layout_constraintStart_toEndOf
layout_constraintStart_toStartOf
layout_constraintEnd_toStartOf
layout_constraintEnd_toEndOf

15/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Margins

If side margins are set, they will be applied to the corresponding
constraints, enforcing the margin as a space between the target
and the source side.

android:layout_marginStart
android:layout_marginEnd
android:layout_marginLeft
android:layout_marginTop
android:layout_marginRight
android:layout_marginBottom

16/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Visibility behavior

ConstraintLayout has a specific handling of widgets being marked
as View.GONE . GONE widgets, as usual, are not going to be
displayed and are not part of the layout itself (i.e. their actual
dimensions will not be changed if marked as GONE).
But in terms of the layout computations, GONE widgets are still
part of it, with an important distinction:

For the layout pass, their dimension will be considered as zero
(basically, they will be resolved to a point)
If they have constraints to other widgets they will still be
respected, but any margins will be as if equals to zero

17/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Centering positioning

1 <androidx.constraintlayout.widget.ConstraintLayout ...>
2 <Button android:id="@+id/button" ...
3 app:layout_constraintHorizontal_bias="0.3"
4 app:layout_constraintLeft_toLeftOf="parent"
5 app:layout_constraintRight_toRightOf="parent/>
6 </>
7

18/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Centering positioning with bias

1 <androidx.constraintlayout.widget.ConstraintLayout ...>
2 <Button android:id="@+id/button" ...
3 app:layout_constraintLeft_toLeftOf="parent"
4 app:layout_constraintRight_toRightOf="parent/>
5 </>
6

19/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Circular positioning

1 <Button android:id="@+id/buttonA" ... />
2 <Button android:id="@+id/buttonB" ...
3 app:layout_constraintCircle="@+id/buttonA"
4 app:layout_constraintCircleRadius="100dp"
5 app:layout_constraintCircleAngle="45" />

The following attributes can be used:
layout_constraintCircle : references another widget id
layout_constraintCircleRadius : the distance to the other
widget center
layout_constraintCircleAngle : which angle the widget should
be at (in degrees, from 0 to 360)

20/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Dimensions constraints
You can define minimum and maximum sizes for the
ConstraintLayout itself:

android:minWidth set the minimum width for the layout
android:minHeight set the minimum height for the layout
android:maxWidth set the maximum width for the layout
android:maxHeight set the maximum height for the layout

The dimension of the widgets can be specified by setting the
android:layout_width and android:layout_height attributes in 3
different ways:

Using a specific dimension (either a literal value such as
123dp or a Dimension reference)
Using WRAP_CONTENT, which will ask the widget to
compute its own size
Using 0dp, which is the equivalent of
”MATCH_CONSTRAINT”

21/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Chains

Chains provide group-like behavior in a single axis (horizontally or
vertically). The other axis can be constrained independently.

A set of widgets are considered a chain if they are linked together
via a bi-directional connection (on Figure, showing a minimal
chain, with two widgets).

22/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Chain Style I

CHAIN_SPREAD – the elements will be spread out (default
style)
Weighted chain – in CHAIN_SPREAD mode, if some widgets
are set to MATCH_CONSTRAINT, they will split the
available space
CHAIN_SPREAD_INSIDE – similar, but the endpoints of the
chain will not be spread out

23/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Chain Style II

CHAIN_PACKED – the elements of the chain will be packed
together. The horizontal or vertical bias attribute of the child
will then affect the positioning of the packed elements

24/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

More information

https:
//developer.android.com/training/constraint-layout
https://constraintlayout.com/basics/setup.html
https://www.raywenderlich.com/
155-android-listview-tutorial-with-kotlin

25/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/training/constraint-layout
https://developer.android.com/training/constraint-layout
https://constraintlayout.com/basics/setup.html
https://www.raywenderlich.com/155-android-listview-tutorial-with-kotlin
https://www.raywenderlich.com/155-android-listview-tutorial-with-kotlin

Tools

https://material.io/resources
https://romannurik.github.io/AndroidAssetStudio/
https://material.io/color/
https://www.img-bak.in/
https://material.io/resizer/
https://material.io/devices/

26/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://material.io/resources
https://romannurik.github.io/AndroidAssetStudio/
https://material.io/color/
https://www.img-bak.in/
https://material.io/resizer/
https://material.io/devices/

Material Design - Goal

Create a visual language that synthesizes classic principles of
good design with the innovation and possibility of technology
and science.
Develop a single underlying system that allows for a unified
experience across platforms and device sizes. Mobile precepts
are fundamental, but touch, voice, mouse, and keyboard are
all first-class input methods.
Material is a design system created by Google to help teams
build high-quality digital experiences for Android, iOS, Flutter,
and the web.

27/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Material Design - Components

App bars
Bunner
Card
Floataing Button
Data Tables
Dialogs
List, Image List
Snackbars
ToolTip
...

28/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Material Theming

Material Theming refers to the customization of your Material
Design app to better reflect your product’s brand.
You can redefine:

Color
Typography
Shape e.g. change size or button corners.

29/29 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

MOBILE APPLICATION DEVELOPMENT
Sensors

Innovative Open Source courses for Computer Science

30.05.2021

1/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensors in mobile device

Inertial Sensors: Gyroscope, Accelerometer, Magnetometer
(e-Compass)
Optical Sensors: Proximity, Ambient Light, RGB Color, Image
Sensors (Front/Rear)
Touch Sensors: Multi-Touch, Touchless Hover, Pressure Touch
Environmental Sensors: Temperature, Humidity, Barometric
Pressure, Gas (CO…)*
Wireless/RF Sensors:GPS, WiFi, Cellular A-GPS, Bluetooth
Low Energy, NFC
Other Sensors:MEMS Microphones, Biometric/Fingerprint*,
BioSensors*

MEMS Sensor
* - Future sensors

2/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensors

https://www.fierceelectronics.com/components/smartphone-sensor-evolution-rolls-rapidly-forward

3/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://www.fierceelectronics.com/components/smartphone-sensor-evolution-rolls-rapidly-forward

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Single Sensor Use Cases

Compass Apps
Tilt Sensing
Multi-Touch, Touchless Hover
Ambient Light/Color or Proximity Sensing
Ambient Temperature and Humidity Sensing
…

4/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mobile Sensor Fusion Use Cases

Gesture UI Control (Motion, Proximity)
Remote Control App (Motion, Multi-Touch, RF)
Augmented Reality (Inertial, GPS, Image)
Indoor Navigation and Positioning (Inertial, Pressure, WiFi)
Context-Aware Mobile Services(ALL SENSORS !!)
…

5/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Android - sensor

The Android platform supports three broad categories of sensors:
Motion sensors - These sensors measure acceleration forces
and rotational forces along three axes. This category includes
accelerometers, gravity sensors, gyroscopes, and rotational
vector sensors.
Environmental sensors - These sensors measure various
environmental parameters, such as ambient air temperature
and pressure, illumination, and humidity. This category
includes barometers, photometers, and thermometers
Position sensors - These sensors measure the physical position
of a device. This category includes orientation sensors and
magnetometers.

6/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Android - sensor

http://developer.android.com/guide/topics/sensors/sensors_overview.html

7/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

http://developer.android.com/guide/topics/sensors/sensors_overview.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Android - sensor

http://developer.android.com/guide/topics/sensors/sensors_overview.html

8/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

http://developer.android.com/guide/topics/sensors/sensors_overview.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensor Framework

Determine which sensors are available on a device.
Determine an individual sensor’s capabilities, such as its
maximum range, manufacturer, power requirements, and
resolution.
Acquire raw sensor data and define the minimum rate at
which you acquire sensor data.
Register and unregister sensor event listeners that monitor
sensor changes.

9/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensor Framework

Android sensor framework - access and acquire raw sensor
data by using the Android sensor framework.
The sensor framework is part of the android.hardware package
and includes the following classes and interfaces:

SensorManager
Sensor
SensorEvent
SensorEventListener

SensorManager
We can use this class to create an instance of the sensor service.
This class provides various methods for accessing and listing
sensors, registering and unregistering sensor event listeners, and
acquiring orientation information. This class also provides several
sensor constants that are used to report sensor accuracy, set data
acquisition rates, and calibrate sensors.

10/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensor Framework

Android sensor framework - access and acquire raw sensor
data by using the Android sensor framework.
The sensor framework is part of the android.hardware package
and includes the following classes and interfaces:

SensorManager
Sensor
SensorEvent
SensorEventListener

Sensor
We can use this class to create an instance of a specific sensor.
This class provides various methods that let you determine a
sensor’s capabilities.

10/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensor Framework

Android sensor framework - access and acquire raw sensor
data by using the Android sensor framework.
The sensor framework is part of the android.hardware package
and includes the following classes and interfaces:

SensorManager
Sensor
SensorEvent
SensorEventListener

SensorEvent
The system uses this class to create a sensor event object, which
provides information about a sensor event. A sensor event object
includes the following information: the raw sensor data, the type of
sensor that generated the event, the accuracy of the data, and the
timestamp for the event.

10/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sensor Framework

Android sensor framework - access and acquire raw sensor
data by using the Android sensor framework.
The sensor framework is part of the android.hardware package
and includes the following classes and interfaces:

SensorManager
Sensor
SensorEvent
SensorEventListener

SensorEventListener
You can use this interface to create two callback methods that
receive notifications (sensor events) when sensor values change or
when sensor accuracy changes.

10/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Typical steps

Identifying sensors and sensor capabilities
Monitor sensor events

Identifying sensors
Identifying sensors and sensor capabilities at runtime is useful if
your application has features that rely on specific sensor types or
capabilities. For example, you may want to identify all of the
sensors that are present on a device and disable any application
features that rely on sensors that are not present. Likewise, you
may want to identify all of the sensors of a given type so you can
choose the sensor implementation that has the optimum
performance for your application.

11/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Typical steps

Identifying sensors and sensor capabilities
Monitor sensor events

Monitoring sensor
Monitoring sensor events is how you acquire raw sensor data. A
sensor event occurs every time a sensor detects a change in the
parameters it is measuring. A sensor event provides you with four
pieces of information: the name of the sensor that triggered the
event, the timestamp for the event, the accuracy of the event, and
the raw sensor data that triggered the event.

11/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Identifying Sensors and Sensor Capabilities

1. Get a reference to the sensor service
1 ^^Iprivate lateinit var sensorManager: SensorManager
2 ...
3 ^^IsensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
4 ^^I

2. Get a listing of every sensor on a device
1 val deviceSensors: List<Sensor> = sensorManager.getSensorList(Sensor.TYPE_ALL)
2 ^^I

2. Or use another constant instead of TYPE_ALL such as
TYPE_GYROSCOPE, TYPE_LINEAR_ACCELERATION, or
TYPE_GRAVITY.

1 if (sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD) != null) {
2 // Success! There's a magnetometer.
3 } else {
4 // Failure! No magnetometer.
5 }
6 ^^I

12/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Capabilities

1 private lateinit var sensorManager: SensorManager
2 private var mSensor: Sensor? = null
3
4 ...
5
6 sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
7
8 if (sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY) != null) {
9 val gravSensors: List<Sensor> = sensorManager.getSensorList(Sensor.TYPE_GRAVITY)
10 // Use the version 3 gravity sensor.
11 mSensor = gravSensors.firstOrNull { it.vendor.contains("Google LLC") && it.

version == 3 }
12 }
13 if (mSensor == null) {
14 // Use the accelerometer.
15 mSensor = if (sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER) != null)

{
16 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)
17 } else {
18 // Sorry, there are no accelerometers on your device.
19 // You can't play this game.
20 null
21 }
22 }

13/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Usefull method to get info about Sensor Capabilities

getResolution(), getMaximumRange()
getPower()
getMinDelay()

14/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Monitoring Sensor Events

To monitor raw sensor data you need to implement two callback
methods that are exposed through the SensorEventListener
interface: onAccuracyChanged() and onSensorChanged()

Sensor’s accuracy changes

1 override fun onAccuracyChanged(sensor: Sensor, accuracy: Int) {
2 // Do something here if sensor accuracy changes.
3 }
4 ^^I

Sensor reports a new value

1 override fun onSensorChanged(event: SensorEvent) {
2 // The light sensor returns a single value.
3 // Many sensors return 3 values, one for each axis.
4 val lux = event.values[0]
5 // Do something with this sensor value.
6 }
7 ^^I

15/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Monitoring Sensor Events

1 class SensorActivity : Activity(), SensorEventListener {
2 private lateinit var sensorManager: SensorManager
3 private var mLight: Sensor? = null
4
5 public override fun onCreate(savedInstanceState: Bundle?) {
6 super.onCreate(savedInstanceState)
7 setContentView(R.layout.main)
8
9 sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
10 mLight = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT)
11 }
12
13 override fun onAccuracyChanged(sensor: Sensor, accuracy: Int) {
14 // Do something here if sensor accuracy changes.
15 }
16
17 override fun onSensorChanged(event: SensorEvent) {
18 // The light sensor returns a single value.
19 // Many sensors return 3 values, one for each axis.
20 val lux = event.values[0]
21 // Do something with this sensor value.
22 }
23 ^^I

16/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Monitoring Sensor Events - Register

1
2 override fun onResume() {
3 super.onResume()
4 mLight?.also { light ->
5 sensorManager.registerListener(this, light, SensorManager.

SENSOR_DELAY_NORMAL)
6 }
7 }
8
9 override fun onPause() {
10 super.onPause()
11 sensorManager.unregisterListener(this)
12 }
13 }

17/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Google Play filters

1 <uses-feature android:name="android.hardware.sensor.accelerometer"
2 android:required="true" />

18/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Best Practices for Accessing and Using Sensors

Only gather sensor data in the foreground
Unregister sensor listeners
Test with the Android Emulator
Don’t block the onSensorChanged() method
Avoid using deprecated methods or sensor types
Verify sensors before you use them
Choose sensor delays carefully

Gather sensor data in the foreground
On devices running Android 9 (API level 28) or higher:

Sensors that use the continuous reporting mode, such as
accelerometers and gyroscopes, don’t receive events.
Sensors that use the on-change or one-shot reporting modes
don’t receive events.

19/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Best Practices for Accessing and Using Sensors

Only gather sensor data in the foreground
Unregister sensor listeners
Test with the Android Emulator
Don’t block the onSensorChanged() method
Avoid using deprecated methods or sensor types
Verify sensors before you use them
Choose sensor delays carefully

Unregister sensor listeners
Be sure to unregister a sensor’s listener when you are done using
the sensor or when the sensor activity pauses. If a sensor listener is
registered and its activity is paused, the sensor will continue to
acquire data and use battery resources unless you unregister the
sensor.

19/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Best Practices for Accessing and Using Sensors
Only gather sensor data in the foreground
Unregister sensor listeners
Test with the Android Emulator
Don’t block the onSensorChanged() method
Avoid using deprecated methods or sensor types
Verify sensors before you use them
Choose sensor delays carefully

Test with the Android Emulator

19/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Best Practices for Accessing and Using Sensors

Only gather sensor data in the foreground
Unregister sensor listeners
Test with the Android Emulator
Don’t block the onSensorChanged() method
Avoid using deprecated methods or sensor types
Verify sensors before you use them
Choose sensor delays carefully

Don’t block the onSensorChanged() method
Sensor data can change at a high rate - system may call the
onSensorChanged(SensorEvent) method quite often
Filtering or reduction of sensor data, you should perform that
work outside of the onSensorChanged(SensorEvent) method

19/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Best Practices for Accessing and Using Sensors

Only gather sensor data in the foreground
Unregister sensor listeners
Test with the Android Emulator
Don’t block the onSensorChanged() method
Avoid using deprecated methods or sensor types
Verify sensors before you use them
Choose sensor delays carefully

Choose sensor delays carefully
When you register a sensor with the registerListener()
method, be sure you choose a delivery rate that is suitable for
your application or use-case.
Allowing the system to send extra data that you don’t need
wastes system resources and uses battery power.

19/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motion Sensor

Motion sensors are useful for monitoring device movement, such
as tilt, shake, rotation, or swing.
Sensors’ possible architectures vary by sensor type:

The gravity, linear acceleration, rotation vector, significant
motion, step counter, and step detector sensors are either
hardware-based or software-based.
The accelerometer and gyroscope sensors are always
hardware-based.

https://developer.android.com/guide/topics/sensors/
sensors_motion

20/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - Motion Sensor

Source + Description
https://www.raywenderlich.com/10838302-sensors-tutorial-
for-android-getting-started

21/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Position sensors

Position sensors are useful for determining a device’s physical
position in the world’s frame of reference. For example, you can
use the geomagnetic field sensor in combination with the
accelerometer to determine a device’s position relative to the
magnetic north pole.

22/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compute the device’s orientation

1 private lateinit var sensorManager: SensorManager
2 ...
3 // Rotation matrix based on current readings from accelerometer and magnetometer.
4 val rotationMatrix = FloatArray(9)
5 SensorManager.getRotationMatrix(rotationMatrix, null, accelerometerReading ,

magnetometerReading)
6
7 // Express the updated rotation matrix as three orientation angles.
8 val orientationAngles = FloatArray(3)
9 SensorManager.getOrientation(rotationMatrix, orientationAngles)

23/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compute the device’s orientation

The system computes the orientation angles by using a device’s
geomagnetic field sensor in combination with the device’s
accelerometer. Using these two hardware sensors, the system
provides data for the following three orientation angles:

Azimuth (degrees of rotation about the -z axis) This is
the angle between the device’s current compass direction and
magnetic north. If the top edge of the device faces magnetic
north, the azimuth is 0 degrees; if the top edge faces south,
the azimuth is 180 degrees. Similarly, if the top edge faces
east, the azimuth is 90 degrees, and if the top edge faces
west, the azimuth is 270 degrees.

24/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compute the device’s orientation

The system computes the orientation angles by using a device’s
geomagnetic field sensor in combination with the device’s
accelerometer. Using these two hardware sensors, the system
provides data for the following three orientation angles:

Pitch (degrees of rotation about the x axis) This is the
angle between a plane parallel to the device’s screen and a
plane parallel to the ground. If you hold the device parallel to
the ground with the bottom edge closest to you and tilt the
top edge of the device toward the ground, the pitch angle
becomes positive. Tilting in the opposite direction— moving
the top edge of the device away from the ground—causes the
pitch angle to become negative. The range of values is -180
degrees to 180 degrees.

24/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compute the device’s orientation

The system computes the orientation angles by using a device’s
geomagnetic field sensor in combination with the device’s
accelerometer. Using these two hardware sensors, the system
provides data for the following three orientation angles:

Roll (degrees of rotation about the y axis) This is the
angle between a plane perpendicular to the device’s screen
and a plane perpendicular to the ground. If you hold the
device parallel to the ground with the bottom edge closest to
you and tilt the left edge of the device toward the ground, the
roll angle becomes positive. Tilting in the opposite
direction—moving the right edge of the device toward the
ground— causes the roll angle to become negative. The range
of values is -90 degrees to 90 degrees.

24/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Device Orientation

25/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Environment sensors

You can use these sensors to monitor relative ambient
humidity, illuminance, ambient pressure, and ambient
temperature near an Android-powered device
All four environment sensors are hardware-based and are
available only if a device manufacturer has built them into a
device.
environment sensors return a single sensor value for each data
event

26/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example

AndroidManifest
Service
Callback methods
Emulator

https://www.raywenderlich.com/
10838302-sensors-tutorial-for-android-getting-started

27/27 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://www.raywenderlich.com/10838302-sensors-tutorial-for-android-getting-started
https://www.raywenderlich.com/10838302-sensors-tutorial-for-android-getting-started

MOBILE APPLICATION DEVELOPMENT
Location

Innovative Open Source courses for Computer Science

30.05.2021

1/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Location

location

A service to determine the position of the device and, indirectly,
the user. In mobile systems, location is one of the unique features
to create location-aware applications.

Allows the location of the device to be determined

General location

Precise location

Google Play services - recommended location method in
Android

2/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Examples of applications

Location-specific information (local weather forecast, local
news/messages, allergen concentration)

Information on nearby resources (bank, pharmacy, pub)

Interactive maps and tourist information

Location-dependent mobile advertising

Management of mobile workers

3/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Google Play services

Mechanism for determining position based on data from
different providers, e.g. GNSS (GPS) module, WiFi module or
Bluetooth.

Fused Location Provider

Faster position determination

Reduced energy consumption

Additional capabilities e.g. geofencing, activity detection

4/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Adding the Google Play services library

1 apply plugin: ’com.android.application ’
2
3 ...
4
5 dependencies{
6 implementation ’com.google.android.gms:play -services -location :21.0.0 ’
7 }

5/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Steps required to define a location

Location type definition

Requesting permission for the device location

Downloading location (last known, cyclic downloading of
location)

Using the location, e.g. to show a point on the map

6/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Definition permission

1 <?xml version="1.0" encoding="utf -8"?>
2 <manifest ... >
3 ...
4 <!-- Always include this permission -->
5 <uses -permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
6
7 <!-- Include only if your app benefits from precise location access. -->
8 <uses -permission android:name="android.permission.ACCESS_FINE_LOCATION" />
9 <!-- Recommended for Android 9 (API level 28) and lower. -->

10 <!-- Required for Android 10 (API level 29) and higher. -->
11 ...
12 <!-- Required only when requesting background location access on
13 Android 10 (API level 29) and higher. -->
14 <uses -permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION"

/>
15 ...
16 <application ...>
17 <service
18 android:name="MyNavigationService"
19 android:foregroundServiceType="location" ... >
20 </service >
21 </application >
22 ...
23 </manifest >

7/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Types of locations

General/Coarse location

Precise location

Foreground location

Background location

8/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Request for permissions - workflow

9/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example request permission

1 private fun checkPermission ()
2 {
3 if(ContextCompat.checkSelfPermission(this ,
4 Manifest.permission.ACCESS_FINE_LOCATION
5) != PackageManager.PERMISSION_GRANTED)
6 requestPermissionLauncher.launch(Manifest.permission.

ACCESS_FINE_LOCATION)
7 }
8 private val requestPermissionLauncher =
9 registerForActivityResult(

10 ActivityResultContracts.RequestPermission ()
11){
12 isGranted: Boolean ->
13 if (isGranted){
14 Log.i("Permission: ", "Granted")
15 } else{
16 Log.i("Permission: ", "Denied")
17 }
18 }

10/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Using Fused Location Provider - last known position

Object definition
1 private lateinit var fusedLocationClient: FusedLocationProviderClient

Initialization
1 override fun onCreate(savedInstanceState: Bundle ?){
2 ...
3 fusedLocationClient = LocationServices.getFusedLocationProviderClient(

this)
4
5 }

Retrieval of last known location
1 checkPermission ()
2 fusedLocationClient.lastLocation
3 .addOnSuccessListener{ location : Location? ->
4 val myPosition = location ?.let{
5 LatLng(it.latitude ,it.longitude)
6 }
7 myPosition ?.let{
8 mMap.addMarker(MarkerOptions ().position(myPosition).title("

My position"))
9 mMap.moveCamera(CameraUpdateFactory.newLatLng(myPosition))

10 }
11 }

11/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Continuous location - I

Object definition

Initialisation

Defining return methods

Enabling and disabling location update information

Selecting the refresh rate

12/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Continuous Location II

Definition of objects
1 private lateinit var locationRequest: LocationRequest
2 private lateinit var locationCallback: LocationCallback

Initialization
1 fusedLocationClient = LocationServices.getFusedLocationProviderClient(

this)
2 locationRequest = LocationRequest.Builder(Priority.

PRIORITY_HIGH_ACCURACY ,
3 500)
4 .build()
5
6 locationCallback = object : LocationCallback (){
7 override fun onLocationResult(locationResult: LocationResult){
8 if (locationResult != null){
9 super.onLocationResult(locationResult)

10 locationResult.lastLocation ?.let{
11
12 //own code
13
14 }
15
16 }
17 }
18 }

13/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Continuous location III

Activation of location update information
1 val addTask= fusedLocationClient.requestLocationUpdates(

locationRequest , locationCallback , Looper.myLooper ())
2 addTask.addOnCompleteListener{task ->
3 if (task.isSuccessful){
4 Log.d("startStopRequestLocation", "Start loop Location

Callback.")
5 } else{
6 Log.d("startStopRequestLocation", "Failed start Location

Callback.")
7 }
8 }

Deactivation of location update information
1 val removeTask = fusedLocationClient.removeLocationUpdates(

locationCallback)
2 removeTask.addOnCompleteListener{ task ->
3 if (task.isSuccessful){
4 Log.d("startStopRequestLocation", "Location Callback removed

.")
5 } else{
6 Log.d("startStopRequestLocation", "Failed to remove Location

 Callback.")
7 }
8 }

14/14 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

MOBILE APPLICATION DEVELOPMENT
MVVM

Innovative Open Source courses for Computer Science

30.05.2021

1/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

MVVM

MVVM

Model — View — ViewModel is the industry-recognized software
architecture pattern that overcomes all drawbacks of MVP and
MVC design patterns. MVVM suggests separating the data
presentation logic(Views or UI) from the core business logic part of
the application.

Model - This holds the data of the application. It cannot
directly talk to the View. Generally, it’s recommended to
expose the data to the ViewModel through Observables.
View - It represents the UI of the application devoid of any
Application Logic. It observes the ViewModel.
ViewModel - It acts as a link between the Model and the
View. It’s responsible for transforming the data from the
Model. It provides data streams to the View. It also uses
hooks or callbacks to update the View. It’ll ask for the data
from the Model.

2/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

MVVM -2

3/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Architecture components

Collection of libraries that help you design robust, testable,
and maintainable apps

Serve as the main guideline in building the backbone of our
project architecture

Using Android architecture components we don’t have to
worry much about managing the app’s lifecycle or loading
data into our UI

Components

ViewModel

LiveData

Lifecycle

Extend LiveData

4/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ViewModel

The ViewModel class is designed to hold and manage
UI-related data in a life-cycle conscious way.

This allows data to survive configuration changes such as
screen rotations.

Architecture Components provides ViewModel helper class for
the UI controller that is responsible for preparing data for the
UI.

ViewModel objects are automatically retained during
configuration changes so that data they hold is immediately
available to the next activity or fragment instance.

5/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ViewModel benefits

It allows you to persist UI state

It provides access to business logic.

Persistence

ViewModel allows the survival through both the state that a
ViewModel holds, and operations that a ViewModel trigger. This
caching means that you don’t have to fetch data again through
common configuration changes, such as a screen rotation.

Access to business logic

ViewModel is the right place to handle business logic in the UI
layer. The ViewModel is also in charge of handling events and
delegating them to other layers of the hierarchy when business
logic needs to be applied to modify application data.

6/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ViewModel - example

Define VieModel
1 class MyViewModel : ViewModel () {
2 private val users: MutableLiveData <List <User >> by lazy {
3 MutableLiveData <List <User >>().also {
4 loadUsers ()
5 }
6 }
7
8 fun getUsers (): LiveData <List <User >> {
9 return users
10 }
11
12 private fun loadUsers () {
13 // Do an asynchronous operation to fetch users.
14 }
15 }

Access the list from an activity as follows
1 override fun onCreate(savedInstanceState: Bundle ?) {
2
3 // Use the ’by viewModels ()’ Kotlin property delegate
4 // from the activity -ktx artifact
5 val model: MyViewModel by viewModels ()
6 model.getUsers ().observe(this , Observer <List <User >>{ users ->
7 // update UI
8 })

7/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

LiveData

LiveData is an observable data holder class.

Unlike a regular observable, LiveData is lifecycle-aware,
meaning it respects the lifecycle of other app components,
such as activities, fragments, or services.

This awareness ensures LiveData only updates app component
observers that are in an active lifecycle state.

LiveData follows the observer pattern. LiveData notifies
Observer objects when the lifecycle state changes

LiveData also automatically pushes an existing value, if there
is one, to any new registered Observer objects.

When coupled with the automatic-removal feature, this makes
LiveData very convenient for dealing with confi guration
changes.

8/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Types in LiveData

LiveData - is immutable by default. By using LiveData we can
only observe the data and cannot set the data.

MutableLiveData - is mutable and is a subclass of LiveData.
In MutableLiveData we can observe and set the values using
postValue() and setValue() methods

MediatorLiveData - can observe other LiveData objects such
as sources and react to their onChange() events.

9/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Extend LiveData

LiveData is a lifecycle-aware component and thus it performs
its functions according to the lifecycle state of other
application components.

If the observer’s lifecycle state is active i.e., either STARTED
or RESUMED, only then LiveData updates the app
component.

1 class StockLiveData(symbol: String) : LiveData <BigDecimal >() {
2 private val stockManager = StockManager(symbol)
3
4 private val listener = { price: BigDecimal ->
5 value = price
6 }
7
8 override fun onActive () {
9 stockManager.requestPriceUpdates(listener)
10 }
11
12 override fun onInactive () {
13 stockManager.removeUpdates(listener)
14 }
15 }

10/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Extend LiveData - 2

onActive() - method is called when the LiveData object has
an active observer. This means you need to start observing
the stock price updates from this method.

onInactive() - method is called when the LiveData object
doesn’t have any active observers. Since no observers are
listening, there is no reason to stay connected.

11/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Steps to build application with MVVM design patern

Adding DataBinding and Implementations in your Gradle File

Create a new class for the Model

Create a new class for the ViewModel

Improve View class

Change layout

12/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Configure project

build.gradle(app)
1 android {
2 compileSdk 31
3
4 dataBinding {
5 enabled true
6 }
7
8
9 ...
10
11 dependencies {
12 // ViewModel
13 implementation ’androidx.lifecycle:lifecycle -viewmodel -ktx :2.4.1 ’
14 implementation ’androidx.activity:activity -ktx :1.4.0 ’
15 // Lifecycle
16 implementation "androidx.lifecycle:lifecycle -livedata -ktx :2.4.1"
17 ...
18 }
19 }

13/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Model

1 data class SensorData(
2 var accX: Float ,
3 var accY: Float ,
4 var accZ: Float ,
5 var gyroX: Float ,
6 var gyroY: Float ,
7 var gyroZ: Float ,
8 var light: Float
9)

14/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ViewModel

1 class SensorViewModel(application: Application): AndroidViewModel(application) {
2 private val _sensor = SensorDataLiveData(application)
3 private var _pauseReading = MutableLiveData <Boolean >()
4
5 val sensor: LiveData <SensorData >
6 get() = _sensor
7
8 fun getPauseReading (): MutableLiveData <Boolean > {
9 return _pauseReading
10 }
11
12 fun changeButtonStatus ()
13 {
14 if(_pauseReading.value ==true) _sensor.registerListeners ()
15 else _sensor.unregisterListeners ()
16 _pauseReading.value?.let {
17 _pauseReading.value = !it
18 }
19 }
20 init {
21 _pauseReading = MutableLiveData(false)
22 }
23 }

15/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Change View code

1 private lateinit var binding: ActivityMainBinding
2 private val sensorViewModel: SensorViewModel by viewModels ()
3
4 override fun onCreate(savedInstanceState: Bundle ?) {
5 requestWindowFeature(Window.FEATURE_NO_TITLE)
6 requestedOrientation = ActivityInfo.SCREEN_ORIENTATION_PORTRAIT
7
8 super.onCreate(savedInstanceState)
9 binding = ActivityMainBinding.inflate(layoutInflater)
10 setContentView(binding.root)
11 binding.sensorViewModel = sensorViewModel
12 binding.lifecycleOwner = this
13 }

16/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Change layout

1 <layout xmlns:android="http :// schemas.android.com/apk/res/android"
2 xmlns:app="http :// schemas.android.com/apk/res -auto"
3 xmlns:tools="http :// schemas.android.com/tools">
4
5 <data >
6 <variable
7 name="sensorViewModel"
8 type="edu.zut.erasmus_plus.sensors.viewmodel.SensorViewModel" />
9 </data >

17/17 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

MOBILE APPLICATION DEVELOPMENT
Storage

Innovative Open Source courses for Computer Science

30.05.2021

1/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Android storage options

App-specific storage
Shared storage
Preferences
Databases

App-specific storage
Store files that are meant for your app’s use only, either in
dedicated directories within an internal storage volume or different
dedicated directories within external storage. Use the directories
within internal storage to save sensitive information that other
apps shouldn’t access.

2/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Android storage options

App-specific storage
Shared storage
Preferences
Databases

Shared storage
Store files that your app intends to share with other apps,
including media, documents, and other files.

2/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Android storage options

App-specific storage
Shared storage
Preferences
Databases

Preferences
Store private, primitive data in key-value pairs.

2/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Android storage options

App-specific storage
Shared storage
Preferences
Databases

Databases
Store structured data in a private database using the Room
persistence library.

2/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Storage overview

3/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Which one to choose?

How much space does your data require?
How reliable does data access need to be?
What kind of data do you need to store?
Should the data be private to your app?

4/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Which one to choose?

How much space does your data require?
How reliable does data access need to be?
What kind of data do you need to store?
Should the data be private to your app?

How much space does your data require?
Internal storage has limited space for app-specific data. Use other
types of storage if you need to save a substantial amount of data.

4/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Which one to choose?

How much space does your data require?
How reliable does data access need to be?
What kind of data do you need to store?
Should the data be private to your app?

How reliable does data access need to be?
If your app’s basic functionality requires certain data, such as when
your app is starting up, place the data within internal storage
directory or a database. App-specific files that are stored in external
storage aren’t always accessible because some devices allow users
to remove a physical device that corresponds to external storage.

4/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Which one to choose?

How much space does your data require?
How reliable does data access need to be?
What kind of data do you need to store?
Should the data be private to your app?

What kind of data do you need to store?
If you have data that’s only meaningful for your app, use
app-specific storage. For shareable media content, use shared
storage so that other apps can access the content. For structured
data, use either preferences (for key-value data) or a database (for
data that contains more than 2 columns).

4/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Which one to choose?

How much space does your data require?
How reliable does data access need to be?
What kind of data do you need to store?
Should the data be private to your app?

Should the data be private to your app?
When storing sensitive data—data that shouldn’t be accessible
from any other app—use internal storage, preferences, or a
database. Internal storage has the added benefit of the data being
hidden from users.

4/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Access app-specific files

Internal storage directories - These directories include both a
dedicated location for storing persistent files, and another
location for storing cache data. The system prevents other
apps from accessing these locations, and on Android 10 (API
level 29) and higher, these locations are encrypted. These
characteristics make these locations a good place to store
sensitive data that only your app itself can access.
External storage directories - These directories include both a
dedicated location for storing persistent files, and another
location for storing cache data. Although it’s possible for
another app to access these directories if that app has the
proper permissions, the files stored in these directories are
meant for use only by your app. If you specifically intend to
create files that other apps should be able to access, your app
should store these files in the shared storage part of external
storage instead.

5/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example

https://www.journaldev.com/9383/
android-internal-storage-example-tutorial
https://developer.android.com/training/
data-storage/app-specific
https://github.com/android/storage-samples
To further protect app-specific files, use the Security library
that’s part of Android Jetpack to encrypt these files at rest.
The encryption key is specific to your app.

6/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

https://www.journaldev.com/9383/android-internal-storage-example-tutorial
https://www.journaldev.com/9383/android-internal-storage-example-tutorial
https://developer.android.com/training/data-storage/app-specific
https://developer.android.com/training/data-storage/app-specific
https://github.com/android/storage-samples

Access media files from shared storage

To provide a more enriched user experience, many apps allow
users to contribute and access media that’s available on an
external storage volume.
The framework provides an optimized index into media
collections, called the media store, that allows for retrieving
and updating these media files more easily.
Even after your app is uninstalled, these files remain on the
user’s device.

7/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

ContentResolver

To interact with the media store abstraction, use a
ContentResolver object that you retrieve from your app’s context:

1 val projection = arrayOf(media-database-columns-to-retrieve)
2 val selection = sql-where-clause-with-placeholder-variables
3 val selectionArgs = values-of-placeholder-variables
4 val sortOrder = sql-order-by-clause
5
6 applicationContext.contentResolver.query(
7 MediaStore.media-type.Media.EXTERNAL_CONTENT_URI ,
8 projection,
9 selection,
10 selectionArgs,
11 sortOrder
12)?.use { cursor ->
13 while (cursor.moveToNext()) {
14 // Use an ID column from the projection to get
15 // a URI representing the media item itself.
16 }
17 }

8/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Media files
The system automatically scans an external storage volume and
adds media files to the following well-defined collections:

Images, including photographs and screenshots, which are
stored in the DCIM/ and Pictures/ directories. The system
adds these files to the MediaStore.Images table.
Videos, which are stored in the DCIM/, Movies/, and
Pictures/directories. The system adds these files to the
MediaStore.Video table.
Audio files, which are stored in the Alarms/, Audiobooks/,
Music/, Notifications/, Podcasts/, and Ringtones/
directories, as well as audio playlists that are in the Music/ or
Movies/ directories. The system adds these files to the
MediaStore.Audio table.
Downloaded files, which are stored in the Download/
directory. On devices that run Android 10 (API level 29) and
higher, these files are stored in the MediaStore.Downloads
table. This table isn’t available on Android 9 (API level 28)
and lower.9/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

App preferences

If you have a relatively small collection of key-values that
you’d like to save, you should use the SharedPreferences
A SharedPreferences object points to a file containing
key-value pairs and provides simple methods to read and write
them
Each SharedPreferences file is managed by the framework and
can be private or shared.

10/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

SharedPreferences

This class provides a general framework that allows you to
save and retrieve persistent key-value pairs of primitive data
types.
You can use SharedPreferences to save any primitive data:
booleans, floats, ints, longs, and strings.
This data will persist across user sessions (even if your
application is killed).
“SharedPreferences” are saved as XML files in the
shared_prefs folder

11/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

How using SharePreferences ?

1. Get preferences from a specified file
1 val sharedPref = activity?.getSharedPreferences(
2 getString(R.string.preference_file_key), Context.MODE_PRIVATE)

2. Read
1 val sharedPref = activity?.getPreferences(Context.MODE_PRIVATE) ?: return
2 val defaultValue = resources.getInteger(R.integer.saved_high_score_default_key)
3 val highScore = sharedPref.getInt(getString(R.string.saved_high_score_key),

defaultValue)

3. Write and Apply (or Commit)changes
1 val sharedPref = activity?.getPreferences(Context.MODE_PRIVATE) ?: return
2 with (sharedPref.edit()) {
3 putInt(getString(R.string.saved_high_score_key), newHighScore)
4 apply() // commit() - synchronously
5 }

12/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Settings

Applications often include settings that allow users to modify
app features and behaviors.
Settings is a place in your app where users indicate their
preferences for how your app should behave.
Settings is given low prominence in the UI because it’s not
frequently needed.

13/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

How use settings

1. Create an Android XML resource called e.g. preferences.xml
of the PreferenceScreen type.
2. Add to the file PreferencesCategory, and one of
CheckBoxPreference, ListPreference, EditTextPreference
3. Create the class MyPreferencesActivity which extends
PreferenceActivity This activity loads the preference.xml file
and allows the user to change the values.
4. Add to the method onOptionsItemSelected() code for
running PreferencesActivity

14/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

RoomDatabase

Room provides an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.
Apps that handle non-trivial amounts of structured data can
benefit greatly from persisting that data locally.
Room takes care of caching data when device is offile
This future causes that room is recommend to use instead of
SQLite

15/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

RoomDatabase

Major components in Room
Database - Contains the database holder and serves as the
main access point for the underlying connection to your app’s
persisted, relational data
Entity - Represents a table within the database
DAO - Contains the methods used for accessing the database

16/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Room architecture diagram

17/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example code Entity

1 @Entity
2 data class User(
3 @PrimaryKey val uid: Int,
4 @ColumnInfo(name = "first_name") val firstName: String?,
5 @ColumnInfo(name = "last_name") val lastName: String?
6)

18/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example code DAO

1 @Dao
2 interface UserDao {
3 @Query("SELECT * FROM user")
4 fun getAll(): List<User>
5
6 @Query("SELECT * FROM user WHERE uid IN (:userIds)")
7 fun loadAllByIds(userIds: IntArray): List<User>
8
9 @Query("SELECT * FROM user WHERE first_name LIKE :first AND " +
10 "last_name LIKE :last LIMIT 1")
11 fun findByName(first: String, last: String): User
12
13 @Insert
14 fun insertAll(vararg users: User)
15
16 @Delete
17 fun delete(user: User)
18 }

19/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Example code instance Database

1 @Database(entities = arrayOf(User::class), version = 1)
2 abstract class AppDatabase : RoomDatabase() {
3 abstract fun userDao(): UserDao
4 }

20/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

Live Example

Room Database Example

21/21 Innovative Open Source courses for Computer Science MOBILE APPLICATION DEVELOPMENT

