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Introduction into R environment

R programming for statistics

I. Introduction into R environment
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Introduction into R environment What is R?

Characteristics of the R language

it is a language and free software environment specialized in statistical computation and
data visualisation,

it is accessible for all common OS: UNIX platforms, Win or MacOS,

it is an alternative to the commercial tool S resp. S-plus (language and
environment),developed by AT&T.
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Introduction into R environment What is R?

Why R

it is free, most of the statistical software platforms cost thousands of dollars,
the program has a huge collection of available packages,
R can easily import data from a wide variety of sources,
R contains numerous advanced statistical routines,
R provides interactive platform for data analysis,
R environment offers data visualisation in the form very high quality and aesthetic graphs,
it is platform independent, it is compatible with all most frequently used operating
systems,
it is highly compatible with the programming languages like C,C++, Python, Java.
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Introduction into R environment What is R?

Installing R

It is freely available from the Comprehensive R Archive Network (shortly CRAN)

The internet location is https://cran.r-project.org

Here are at disposal pre-compiled binaries for all common platforms Linux, Mac OS, and
Windows.

You can select the most suitable mirror for downloading the installation package.

Aleš Kozubík
R programming

https://cran.r-project.org


Introduction into R environment What is R?

Installing R packages

R comes with a huge set of packages extending its base core.

They increase the power of R.

To install package we use the function install.packages()
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Introduction into R environment Running R

R first run

Once we have installed R, we can try if it works correctly.

We start the R environment interface simply from command prompt typing:

username@host:~$ R

It displays a short introductory note that is followed by the sign

>

assigning the R prompt.
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Introduction into R environment Running R

Leaving the R environment

The R environment is now ready for an interactive mode of work.

In order to finish work in R environment we simply type

> q()

R reacts by question:

Save workspace image? [y/n/c]:

If we select y, the whole working history is saved in the file .Rhistory saved in the working
directory.
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Introduction into R environment Running R

Workspace and navigation

We enter all command interactively at the command prompt.

Scrolling through the commands history is enabled by using the up and down arrow keys.

This allows to submit a previous commands without retyping it. We only select the desired and
submit it repeatedly using the Enter key.

If we saved the history when leaving R environment, we can return to the commands from
previous session.
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Introduction into R environment Running R

Communication with the OS

The default working directory is the directory where R was started. In this current working
directory R reads and saves files and results. The actual working directory we can find using
the getwd() function.

The current working directory can be changed using the setwd() function.

To run the OS commands we apply the system() function.

To create a new directory

> system("mkdir new")
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Introduction into R environment Running R

Getting help

The general function for getting help has a simple form help(), or shortly in the operator form
?.

To get some information about the additional packages, we use

> help(package="package name")

Some packages include also code demonstrations, we run using function demo()

> demo(package="stats")
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Introduction into R environment Running R

Using R as calculator

Console prompt enables interactively compute the operations and functions

> 5+3
[1] 8

If we don’t see new prompt, it may be because we entered an incomplete command

> 5-
+

We have to type the rest of the command and then press Enter or cancel the command
pressing Esc key.
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Introduction into R environment Running R

Arithmetic operators in R

+ Addition.
- Subtraction.
* Multiplication.
/ Division.
^ Exponentiation.
%% Modulus (Remainder from integer division).
%/% Integer division.

Aleš Kozubík
R programming



Introduction into R environment Running R

Relational operators in R

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
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Introduction into R environment Running R

Frequently used math functions

exp() Exponential sqrt() Square root
log() Logarithm (default natural) abs() Absolute value
log10() Logarithm with base 10
sin() Sine asin() Arc sine
cos() Cosine acos() Arc cosine
tan() Tangent atan() Arc tangent
round() Rounding (default to integer)
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Introduction into R environment Objects in R

Objects

R is object-oriented language

Everything in R is an object and it represents some data that has been stored in memory

Objects can be given any name, rules that must be respected:

the name consists only of lower or upper case letters, numbers, underscores and dots,
the name begins with upper or lower case letter,
R is case sensitive (it means A and a are two different objects),
the name must nor be any of the R’s reserved words (the list of them is visible after
entering help(reserved)),
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Introduction into R environment Objects in R

Creating objects

We create a new object simply with the assignment operator

The assigning operator has two possible forms: <- or =.

It is recommended to use <- as = can sometimes lead to errors:

> log(x=25,base=5)
[1] 2
> x
Error: object ’x’ not found
> log(x<-25,base=5)
[1] 2
> x
[1] 25
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Introduction into R environment Objects in R

Listing and removing objects

The list of all created object we obtain as an answer of the ls() function.

The objects we will not use in the future can be removed from the memory using the rm()
function.
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Data structures in R

R programming for statistics

II. Data structures in R
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Data structures in R Elementary data types

Data types and structures

Here exists 5 elementary data types

numeric,

integer,

complex,

logical,

character.

They can be aggregated into the data
structures:

vector,

matrix,

list,

frame.

Aleš Kozubík
R programming



Data structures in R Elementary data types

Data type numeric

The data type numeric represents the real decimal numbers.

It is the default type of each new object

If we assign to any variable the decimal

The type of any object we recognise using function class()
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Data structures in R Elementary data types

Data type numeric – an example

Let us see the example.
1 > x<-12.35
2 > class(x)
3 [1] "numeric"

Note
Number is represented as vector with length 1. Sign [1] means the first position in the vector.
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Data structures in R Elementary data types

Data type integer

To create the object of the integer type, we use the function as.integer()

Example
> a <- as.integer (12)
> a
[1] 12
> class(a)
[1] "integer"
> is.integer(a)
[1] TRUE
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Data structures in R Elementary data types

Change of the type

When making any computations, it is important to keep in mind that a variable may be retyped.

Example
1 > x<-as.integer (20)
2 > class(x)
3 [1] "integer"
4 > x<-x/3+1
5 > x
6 [1] 7.666667
7 > class(x)
8 [1] "numeric"
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Data structures in R Elementary data types

Data type complex

R environment provides also the possibility to work with complex numbersT

The complex value is in R defined via the imaginary unit i

Example
> z<-1+2i
> class(z)
[1] "complex"
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Data structures in R Elementary data types

Data type logical

It can have two logical values TRUE or FALSE

It is frequently created via comparison between variables

1 > x<-10;y<-20
2 > z<-x<y
3 > z
4 [1] TRUE
5 > class(z)
6 [1] "logical"
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Data structures in R Elementary data types

Data type logical

Here are defined all standard logical operations

& Logical AND
| Logical OR
! Negation
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Data structures in R Elementary data types

Data type character

It is used to store the string values, strings are entered using the quotation marks

1 > x<-"facina"
2 > class(x)
3 [1] "character"
4 #But as well
5 > x<-as.character (3.1415926)
6 > x
7 [1] "3.1415926"
8 > class(x)
9 [1] "character"
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Data structures in R Elementary data types

Data type character

The character type objects can be concatenated using the paste() function

1 > name <-"Donald"
2 > surname <-"Knuth"
3 > paste(name ,surname)
4 [1] "Donald␣Knuth"
5 # To add any separator
6 > paste(name ,surname ,sep=",")
7 [1] "Donald ,Knuth"
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Data structures in R Data structures

Vectors

Vector is the simplest data structure

It can be characterised as a sequence of data elements of the same basic type

The single values contained in the vector are referred as components

The number of components of the vector is referred as its length.

Aleš Kozubík
R programming



Data structures in R Data structures

Vectors

Vector v is created by combine function c()

Its length we get using the length() function

1 > v<-c(1,3,5,7,9)
2 > length(v)
3 [1] 5
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Data structures in R Data structures

Vectors – the arithmetics

The vector arithmetic is implemented component-wise.

The arithmetic operations are performed component-by-component.

+ addition of a number to all components or addition of vectors component-by-component,
- subtracting of a number from all components or subtracting of vectors

component-by-component,
* multiplication of all components by number or multiplication of vectors component by

component,
/ dividing all components by number or dividing of vectors component-by-component.
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Data structures in R Data structures

Vectors – the arithmetics

1 > v<-c(1,3,5,7,9)
2 > u<-c(10 ,20 ,30 ,40 ,50)
3 > u+v
4 [1] 11 23 35 47 59
5 > u-v
6 [1] 9 17 25 33 41
7 > 5*v
8 [1] 5 15 25 35 45
9 > u*v

10 [1] 10 60 150 280 450
11 > u/5
12 [1] 2 4 6 8 10
13 > u/v
14 [1] 10.000000 6.666667 6.000000 5.714286 5.555556
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Data structures in R Data structures

Matrix

Matrix is a two dimensional collection of data of the same type arranged in rectangular layout.

We create it using the function matrix() with following arguments

vector contains the elements of the matrix,
nrow is an integer value, it specifies number of rows in the matrix,
ncol is an integer value, it specifies number of columns in the matrix,

byrow is a logical value, it indicates, if the matrix should be filled by rows (byrows=TRUE) or by
columns (byrows=FALSE), its default value is FALSE,

dimnames is a list of character vectors that contain optional row and columns labels.
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Data structures in R Data structures

Matrix – entering examples

1 > A<-matrix (3:8, nrow=3,ncol=2,byrow=TRUE)
2 > A
3 [,1] [,2]
4 [1,] 3 4
5 [2,] 5 6
6 [3,] 7 8
7 > B<-matrix (3:8, nrow=3,ncol=2,byrow=FALSE)
8 > B
9 [,1] [,2]

10 [1,] 3 6
11 [2,] 4 7
12 [3,] 5 8
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Data structures in R Data structures

Matrix – extracting submatrices

We define the rows and columns using the c() function.
1 > C<-matrix (1:12 , nrow =3)
2 > C
3 [,1] [,2] [,3] [,4]
4 [1,] 1 4 7 10
5 [2,] 2 5 8 11
6 [3,] 3 6 9 12
7 > C[c(1,3),c(2,4)]
8 [,1] [,2]
9 [1,] 4 10

10 [2,] 6 12
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Data structures in R Data structures

Matrix – assigning names

We assign names to rows and columns using the dimnames() and list() functions
1 > dimnames(A)<-list(c("row1","row2","row3"),
2 + c("col1","col2"))
3 > A
4 col1 col2
5 row1 3 4
6 row2 5 6
7 row3 7 8
8
9 > A["row2","col1"]

10 [1] 5
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Data structures in R Data structures

Matrix – transposing

We can transpose the matrix using the function t()

1 > B<-matrix (3:8, nrow=3,ncol=2,byrow=FALSE)
2 > t(B)
3 [,1] [,2] [,3]
4 [1,] 3 4 5
5 [2,] 6 7 8

Other function are defined in package matlib.
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Data structures in R Data structures

Matrix – the operations

Defined component-wise

It is important when multplying matrices. The common operation * means multiplication of
the elements on the same positions.

The standard multiplication is defined as operation %*%.
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Data structures in R Data structures

Array

Arrays are generalizations of the matrix data structure.

They are more than two dimensional matrices

An array we can create using the array() function.

Its syntax is

name<-array(vector, dimensions,dimnames)
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Data structures in R Data structures

Array – creation

Now we illustrate creating of the 3× 4× 3 array.

For greater clarity of the array, we create at first the names of single dimensions.

1 > dim1 <-c("A1","A2","A3")
2 > dim2 <-c("B1","B2","B3","B4")
3 > dim3 <-c("C1","C2","C3")
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Data structures in R Data structures

Data structure frame

Frame is the most common structure for storing the data.

It enables storing the column vectors of the different data types.

Data frames are created using the function data.frame(), general syntax
1 > name <-data.frame(col1 ,col2 ,col3 , ...)
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Data structures in R Data structures

Data frame – creation

We create a short data frame inckuding data about scoring of the basketball players

1 > playerID <-c(1,2,3,4)
2 > position <-c("forward","guard","forward","center")
3 > attempted <-c(12 ,6,10,15)
4 > made <-c(7,4,6,12)
5 > players <-data.frame(playerID ,position ,attempted ,made)
6 > players
7 playerID position attempted made
8 1 1 forward 12 7
9 2 2 guard 6 4

10 3 3 forward 10 6
11 4 4 center 15 12
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Data structures in R Data structures

Data frame – merging the datasets

We frequently need to merge date from two or more datasets.

We use function merge().

The arguments are the names of two data frames to be merged.

Third argument by=’’column_name’’ defines the key variable for joining the data.
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Data structures in R Data structures

Data frame – merging the datasets

To demonstrate the merging, we create new frame rebounds at first.

1 > offensive <-c(5,2,3,10)
2 > defensive <-c(6,3,8,12)
3 > rebounds <-data.frame(playerID ,defensive ,offensive)
4 > row.names(rebounds)<-c("Player1","Player2","Player3",
5 + "Player4")
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Data structures in R Data structures

Lists

Lists represent the most complex data structure.

Lists are ordered collections of objects.

To create a list, we use the function list(). Its syntax is simple:

\list(object1,object2,...)

Its arguments are names of existing objects
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Data structures in R Data structures

Lists

Optionally we can name the object in the created list:

\list(name1=object1,name2=object2,...)
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Data structures in R Data input and output

Entering data from the keyboard

The simplest method (but also the most time consuming for large samples)

We work in two steps

Create the empty data frame with the variable names and types we want to store in the
dataset.
Invoke the simple data editor using the function edit(), whose argument is the name of
the data frame we want to edit.
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Data structures in R Data input and output

Entering data from the keyboard

We create empty data frame named mydata with four variables: name that has type character
and three numeric variables age, height and weight.

1 > mydata <-data.frame(name=character (0),age=numeric (0),
2 + height=numeric (0), weight=numeric (0))
3 > mydata <-edit(mydata)

Note
Let us note, that assigning like numeric(0) and character(0) create a variable of the given
type but without any data.
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Data structures in R Data input and output

Entering data from the .csv file

Options of the read.csv() function.

header logical value, indicates whether the input file contains the names of variables as
the first line, default value TRUE.
sep defines the field separator character, the default value is comma,
dec defines the character used in the file for decimal points, default value is ., we
mention also read.csv2() function, which adopts using the comma for decimal numbers
and semicolon as delimiter.
skip=n specify the number of lines to skip before the data starts. This option is useful for
data tables with blank rows or text padding at the top of files.
stringsAsFactors which is a logical value that indicates whether the strings are
converted to factors, to prevent converting we set it to FALSE.
row.names a vector of row names
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Data structures in R Data input and output

Writing data into the .csv file

R can create csv file form existing data frame.

We use the write.csv() function, or alternatively the write.csv2() function, that uses a
comma for the decimal point and a semicolon for the separator.

Common syntax

write.csv(object,file="file_name",...options)

object is obligatory argument containing the name of the data frame we want to save and
file_name is the name (or full path) of the file
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Data structures in R Data input and output

Writing data into the .csv file

Selected options of the write.csv() function

append which is a logical value that indicates whether the output is appended to exiting
file. The default value is FALSE and any existing file of the given name is destroyed.
sep defines the field separator character. Values within each row of object are separated
by this character.
dec the string to use for decimal points in numeric or complex columns, must be a single
character. The default value is decimal point.
row.names a logical value indicating whether the row names of object are to be written.
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Data structures in R Data input and output

Entering data from the Excel files

Here are several packages that allow us to import data directly from Excel files. Let us mention
some of them:

xlsx,
XLconnect
readxl

Excel 2007 and newer versions use an xlsx format., therefore we introduce here the xlsx
package.
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Data structures in R Data input and output

Entering data from the Excel files

We install the package by standard command:

install.packages("xlsx")

To use it in actual workspace, we load it by the standard way:

library("xlsx")
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Data structures in R Data input and output

Entering data from the Excel files

This package provides two functions for reading the contents of an Excel worksheet into a
R data.frame: read.xlsx() and read.xlsx2().

The difference between these two functions is:

read.xlsx() preserves the data type, the type of the variable corresponds to each
column in the worksheet, but it is slow for large data sets (worksheet with more than
100 000 cells).
read.xlsx2() is faster on big files.
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Data structures in R Data input and output

Entering data from the Excel files

Both functions have similar syntax:

read.xlsx(file, sheetIndex, header=TRUE, colClasses=NA)
read.xlsx2(file, sheetIndex, header=TRUE, colClasses="character")

Their arguments have the following meaning:
file is the name of the file containing the spreadsheet. If the files is not in the working directory,
it has to be declared with the full path.
sheetIndex a number indicating the index of the sheet to read. We can replace it by the
sheetname argument given as character string with the sheet name.
header logical value. If header=TRUE, the first row is used as the names of the variables.
colClasses a character vector that represents the class of each column.
startRow, endRow numbers specifying the index of starting row and the last row to read.
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Data structures in R Data input and output

Writing data into the Excel files

Package xlsx provides two functions fro writing write.xlsx() and write.xlsx2()

General syntax

write.xlsx(x, file, sheetName="Sheet1", col.names=TRUE,
row.names=TRUE, append=FALSE)

write.xlsx2(x, file, sheetName="Sheet1",col.names=TRUE,
row.names=TRUE, append=FALSE)
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Data structures in R Data input and output

Writing data into the Excel files

Their arguments have the following meaning:

x a data.frame to be written into the workbook.
file the path to the output file.
sheetName the character string with the sheet name.
col.names logical value, it indicates if the column names of x are to be written along
with x to the file.
row.names logical value, it indicates if the row names of x are to be written along with x
to the file.
append logical value, it indicates if x should be appended to an existing file, if FALSE, it
overwrites the existing file with the same path.
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Data structures in R Data input and output

Reading data from the JSON files

JSON (JavaScript Object Notation) is a lightweight data-interchange format

To get JSON files into R, we first need to install or load the rjson package.

We can use the fromJSON() function

Usage depends on the location of the .json file

data<-fromJSON(file = "filename.json")
data<-fromJSON(file = "URL to the json file")

In both cases, the object data is stored as the list. For the further analysis we can convert the
data using the as.data.frame() function.
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Data structures in R Data input and output

a

Aleš Kozubík
R programming



Data structures in R Data input and output

Writing data into the JSONl files

It has to be done in two phases.

In the frist step we must prepare the JSON object and in the second step we write it in the file.

To create a JSON object we use toJSON() function:

dataJSON<-toJSON(data)

Then we use the write() function

write(dataJSON, "filename.json")
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Probability distributions in R

R programming for statistics

III. Probability distributions in R
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Probability distributions in R Random samples

Functions implemented

R enables working with a big variety of the probability distributions

For each of the distributions that R handles are implemented four functions

Their names composed from the root name and prefix:

p for the cumulative distribution function,
d for the density or probability function,
q for the quantile function, the inverse to the cumulative distribution function,
r random variable having the specified distribution (random values generator).
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Probability distributions in R Discrete distributions

Discrete distribution

The probabilities are here encoded by a discrete list of the probabilities of the outcomes, known
as the probability mass function

If we assign as H the set of all possible values of the discrete random variable X , we can
introduce the probability mass function p(x) by formula

p(x) = P (X = x) , x ∈ H. (1)
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Probability distributions in R Discrete distributions

Discrete distribution

We mention some of them:

Bernoulli distribution,
binomial distribution,
geometric distribution,
hypergeometric distribution,
negative binomial distribution,
Poisson distribution.
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Probability distributions in R Discrete distributions

Bernoulli distribution

The simplest probability distribution

This is a distribution with only two possible values.

It can be interpreted as an indicator variable, if some random event occurs or not.

Let A is a random event, P (A) = p and the random variable X = 1 if A occurs and X = 0
otherwise. Then the probability mass function has the form

p(x) = px (1− p)1−x for x = 0 or 1

It is implemented in package Rlab as bern with parameter prob.
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Probability distributions in R Discrete distributions

Bernoulli distribution

We have at disposal four functions:

rbern(n,prob), where n is a number of observations and prob is a probability of
occurring the random event A (success in the trial). It generates a vector of 0 and 1
selected from the Bernoulli distribution with given probability.
pbern(q, prob, lower.tail = TRUE, log.p = FALSE)
dbern(x, prob, log = FALSE)
qbern(p, prob, lower.tail = TRUE, log.p = FALSE)
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Probability distributions in R Discrete distributions

Binomial distribution

The binomial distribution is a discrete distribution that describes number of successes in the
series of trials wit two possible outcomes

Formally, let us assign p the probability of success in one trial, n the number of independent
trials and x the number of successes in a sequence of n independent experiments. The random
variable X follows the binomial distribution, if its probability mass function has the form:

P (X = x) =
(

n
x

)
px qn−x , x = 0, 1, 2, . . . , n, (2)

where q + p = 1.
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Probability distributions in R Discrete distributions

Binomial distribution

Four functions for handling binomial distribution in R:

rbinom(n,prob), where n is numbers of observations, p is the probability of success.
This function generates n random variables of a particular probability.
pbinom(x, n, k), where n is total number of trials, p is probability of success, x is the
value at which the probability has to be found out.
dbinom(x, n, p), where n is total number of trials, p is probability of success, x is the
value at which the probability has to be found out.
qbinom(prob, n, p), where prob is the probability, n is the total number of trials and p
is the probability of success in one trial. This function is used to find the n-th quantile,
that is if P(X ≤ k) is given, it finds k.
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Probability distributions in R Discrete distributions

Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes the
probability of x successes in n draws without replacement, from a finite population of size N
that contains exactly K objects with that feature.

Let us denote as N the population size, K the number of success states in the population, n
the number of draws and x the number of observed successes. The random variable X follows
the hypergeometric distribution, if its probability mass function has the form

P (X = x) =
(K

x
)(N−K

n−x
)(N

n
) x = 0, 1, 2, . . . , n. (3)
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Probability distributions in R Discrete distributions

Hypergeometric distribution

Four functions for handling hypergeometric distribution in R:

rhyper(N, m, n, k), generally refers to generating random numbers function by
specifying a seed and sample size,
phyper(x, m, n, k), defines the cumulative distribution function of the hypergeometric
distribution,
dhyper(x, m, n, k), defines the probability mass function of the hypergeometric
distribution,
qhyper(N, m, n, k), is basically hypergeometric quantile function used to specify a
sequence of probabilities between 0 and 1.

Here x represents the data set of values, m size of the population, n number of samples drawn,
k number of items in the population, and N hypergeometrically distributed values.
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Probability distributions in R Discrete distributions

Negative binomial distribution

The negative binomial distribution is a discrete probability distribution that models the number
of successes in a sequence of independent and identically distributed Bernoulli trials before a
specified (non-random) number of failures (denoted n) occurs.

If we denote x the number of successes and the probability of the success as p, the probability
mass function of the negative binomial distribution has the form:

P (X = x) =
(

n + x − 1
n − 1

)
px qn, x = 0, 1, 2, . . . (4)

where q + p = 1, p > 0, q > 0.

Aleš Kozubík
R programming



Probability distributions in R Discrete distributions

Negative binomial distribution

Four functions for handling negative binomial distribution in R:

rnbinom(N,n,prob), where n is numbers of trials, N is the sample size, prob is the
probability of success. This function generates N random variables of a particular
probability.
pnbinom(x, n, p), is used to compute the value of negative binomial cumulative
distribution function. Here x is number of failures prior to the n-th success, and p is
probability of success.
dnbinom(x, n, p), is the probability of x failures prior to the n-th success (note the
difference) when the probability of success is p.
qnbinom(x, n, p), is used to compute the value of negative binomial quantile function.
Here x is the vector of quantile levels, n is the total number of trials and p is the
probability of success in one trial.
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Probability distributions in R Discrete distributions

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time or space if these events occur with
a known constant mean rate and independently of the time since the last event.

If random variable X follows the Poisson distribution with parameter λ > 0 (the average
number of events), its probability mass function has the form

P (X = x) = e−λλx

x ! , x = 0, 1, 2, . . . (5)
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Probability distributions in R Discrete distributions

Poisson distribution

Four functions for handling Poisson distribution in R:

dpois(x,l) calculates the probability mass function value P (X = x) of the Poisson
distribution with the parameter λ implemented as argument l.
ppois(x,l) calculates the cumulative distribution function of a random variable that
follows the Poisson distribution. It returns the probability, P (X ≤ x) the argument l is
the parameter of the distribution. Stating the additional argument lower.tail=FALSE
we get the probability P (X > x).
rpois(k,l) is used for generating random numbers from a given Poisson distribution, k
is number of random numbers needed and l is the parameter of the distribution.
qpois(q,l) is used for generating quantile of a given Poisson’s distribution, q is a vector
of the quantile levels required and l is the parameter of the distribution.
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Probability distributions in R Continuous distributions

Continuous distribution

It is a probability distribution whose support is an uncountable set.

They are uniquely characterized by a cumulative distribution function

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt.
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Probability distributions in R Continuous distributions

Continuous distribution

We mention some of them:

uniform distribution,
exponential distribution,
normal distribution,
Student t distribution,
Chi square distribution,
Fisher F distribution.

Many other are implemented in R.
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Probability distributions in R Continuous distributions

Continuous distribution

We mention some of them:

uniform distribution,
exponential distribution,
normal distribution,
Student t distribution,
Chi square distribution,
Fisher F distribution.

Many other are implemented in R.

We will concern in three “blue” distributions.
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Probability distributions in R Continuous distributions

Uniform distribution

The continuous uniform distribution describes an experiment where there is an arbitrary
outcome that lies between certain bounds.

More exactly, random variable X follows the uniform distribution with parameters a and b,
a < b, if its density function has the form:

f (x) =
{ 1

b−a x ∈ 〈a; b〉
0 elsewhere (6)
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Probability distributions in R Continuous distributions

Uniform distribution

Four functions for handling uniform distribution in R:

dunif() that gives the density function, its arguments are vector x and parameters min
and max of the distribution,
punif() that gives the cumulative distribution function, its arguments are vector x and
parameters min and max of the distribution,
qunif() that gives the quantile function, its arguments are quantiles q and parameters
min and max of the distribution,
runif() that generates the random values of the variable, its arguments are size of the
sample n and parameters min and max of the distribution.
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Probability distributions in R Continuous distributions

Exponential distribution

The exponential distribution describes the waiting time between events in a Poisson point
process, i.e., a process in which events occur continuously and independently at a constant
average rate.

The random variable X follows the exponential distribution with parameter λ > 0, (usually
reported as the rate), if its density function has the form:

f (x) =
{
λe−λx x ≥ 0
0 x < 0 (7)

When the parameter λ is interpreted as the rate, the mean waiting time is 1
λ .
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Probability distributions in R Continuous distributions

Exponential distribution

Four functions for handling exponential distribution in R:

dexp() that gives the density function, its arguments are vector x and parameter rate of
the distribution,
pexp() that gives the cumulative distribution function, its arguments are vector x and
parameter rate of the distribution,
qexp() that gives the quantile function, its arguments are quantiles q and parameter
rate of the distribution,
rexp() that generates the random values of the variable, its arguments are size of the
sample n and parameter rate of the distribution.
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Probability distributions in R Continuous distributions

Normal distribution

A normal (or Gauss) distribution is a type of continuous probability distribution, its probability
density function is

f (x) = 1
σ
√
2π

e−
1
2 ( x−µ

σ )2 . (8)

The parameter µ is the mean the distribution (and also its median and mode), while the
parameter σ is its standard deviation.

The normal distribution is important because of the Central Limit Theorem, which states that
the population of all possible samples of size n from a population with mean µ and variance σ2
approaches a normal distribution with mean µ and σ2

n when n approaches infinity.
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Probability distributions in R Continuous distributions

Normal distribution

Four functions for handling normal distribution in R:

dnormf() that gives the density function, its arguments are vector x and parameters
mean and sd of the distribution,
pnorm() that gives the cumulative distribution function, its arguments are vector x and
parameters mean and sd of the distribution,
qnorm() that gives the quantile function, its arguments are quantiles q and parameters
mean and sd of the distribution,
rnorm() that generates the random values of the variable, its arguments are size of the
sample n and parameters mean and sd of the distribution.
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Programming in R

R programming for statistics

IV. Programming in R
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Programming in R Built-in functions

Functions

Almost all actions in R run through functions.

Here is a rich collection of built-in function

Other functions can be defined by user

The built-in functions we can divide into

math functions,
string functions,
specialized statistical and probability functions,
other useful functions.
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Programming in R Built-in functions

Math functions

Some of them we have already mention in lesson 1.

Here we introduce some additional details

The logarithmic function log() computes as the default value the natural logarithm.

To get logarithm with any base, we must declare the base argument of the function log().

1 > log(4)
2 [1] 1.386294
3 > log(4,base =2)
4 [1] 2
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Programming in R Built-in functions

String functions

Function nchar() determines the size of each elements of an character vector

1 > z<-c("yellow","black","white")
2 > nchar(z)
3 [1] 6 5 5
4 > str <-"This␣is␣a␣long␣string"
5 > nchar(str)
6 [1] 21
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Elementary statistical functions

mean() Sample mean.
median() Sample median.
sd() Standard deviation.
var() Sample variance.
mad() Median absolute deviation.
quantile() Quantiles, default returns quartiles.
range() Range of the values.
sum() Sum of the vector elements.
min() Minimum.
max() Maximum.
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Programming in R Built-in functions

Elementary statistical functions – mean() optional arguments

trim that state the percentage of the highest and lowest values being dropped from the
computation and so it returns the trimmed mean.
Second optional argument na.rm is a logical value indicating whether NA values should be
stripped before the computation proceeds.

1 > x<-c(1,3,5,10,12)
2 > mean(x)
3 [1] 6.2
4 > mean(x,trim =0.2)
5 [1] 6

1 > x<-c(1,5,2,12,NA ,3,6)
2 > mean(x)
3 [1] NA
4 > mean(x,na.rm=TRUE)
5 [1] 4.833333
6 > mean(x,na.rm=TRUE ,trim =0.17)
7 [1] 4
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Programming in R Built-in functions

Elementary statistical functions – mad()

Median absolute deviation is a robust measure of the variability of a univariate sample of
quantitative data.

For the sample X1, . . . ,Xn it is defined by formula:

MAD(X ) = median{|Xi − X |}

1 > mad(delay)
2 [1] 13.3434
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Programming in R Built-in functions

Useful functions – seq()

The function seq() generates the sequence of numbers starting by from value and ends in to
value. The last argument by defines the step of the sequence.

1 > seq (10)
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > seq(5,15)
4 [1] 5 6 7 8 9 10 11 12 13 14 15
5 > seq(5,15,2)
6 [1] 5 7 9 11 13 15
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Programming in R Built-in functions

Useful functions – rep()

Function rep() has two arguments, the vector x to be repeated and number n of the repeating
cycles

1 > rep(1,10)
2 [1] 1 1 1 1 1 1 1 1 1 1
3 > rep(c(1,3),4)
4 [1] 1 3 1 3 1 3 1 3
5 > rep("hello" ,3)
6 [1] "hello" "hello" "hello"
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Programming in R Built-in functions

Useful functions – sort() a order()

The functions sort() and order() are joined with sorting the vectorx

sort() gives sorted values while order() gives the indices of ordered the components in the
original vector.

1 > x<-c(5,2,10,3,7,8)
2 > sort(x)
3 [1] 2 3 5 7 8 10
4 > order(x)
5 [1] 2 4 1 5 6 3
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Programming in R Built-in functions

Useful functions – rev()

Gives vector x in reverse order

1 > rev(x)
2 [1] 8 7 3 10 2 5
3 > rev(sort(x))
4 [1] 10 8 7 5 3 2
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Conditional statements – if statement

if() statement performs operations based on a simple condition

if(condition){commands to be performed if condition holds}

More than one commands need to be braced

1 > x<-5
2 > if(x%%2){ print("Odd␣number")}
3 [1] "Odd␣number"
4 > x<-6
5 > if(x%%2){ print("Odd␣number")}
6 >
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Programming in R Program flow controls

Conditional statements – switch

switch() tests an expression against elements of a list. Each value in the list is called case

The syntax of the switch() function:

switch (expression, list)

1 > x<-10
2 > switch(x%%2+1,"even","odd")
3 [1] "even"
4 > x<-9
5 > switch(x%%2+1,"even","odd")
6 [1] "odd"
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Conditional statements – switch

If the expression is a character string, switch() will return the value based on the name of the
element.

1 > x <- "a"
2 > switch(x,"a"="apple","b"="banana","c"="cherry")
3 [1] "apple"
4 > x <- "c"
5 > switch(x,"a"="apple","b"="banana","c"="cherry")
6 [1] "cherry"
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Loops – for

for loop allows us to repeat a command or a block of commands a fixed number of times

The general syntax of the for loop is like this:

for (val in sequence)
{
statement
}

where sequence is a vector and val takes on each of its value during the loop
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Programming in R User defined functions

User defined function

The general structure of a function is given below.

myfunction_name <- function(arg1, arg2, ... ){
statements
return(object)
}
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Programming in R User defined functions

User defined function

The different components of a function are:

Function Name which is the actual name of the function. It is stored in R environment
as an object with this name.
Arguments which are placeholders. When a function is invoked, we pass values to the
arguments. Arguments are optional, that is, a function may contain no arguments. Also
arguments can have default values.
Function Body which contains a collection of statements that defines what the function
does. The body of the function goes inside the curly brackets {}.
Return Value which is the last expression in the function body to be evaluated.
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Programming in R Running scripts in R

Running R scripts

An R script is simply a text file containing (almost) the same commands that you would enter

We can create it in any simple text editor and save with extension .R

There are basically two Linux commands to run the script

Rscript filename.R

and is preferred. The older command is

R CMD BATCH filename.R
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R programming for statistics

V. Elementary graphics
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Elementary graphics Scatter plots

Scatter plots

Scatter Plot represents values for two different numeric variables.

The position of each dot on the horizontal and vertical axis indicates values for an individual
data point.

The most common applications and uses of the scatter plots are:

1 Demonstration of the relationship between two variables.
2 Identification of correlation relationships.
3 Identification of data patterns.
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Elementary graphics Scatter plots

Scatter plots

We create it simply using plot() function.

In the simplest use, the function has two arguments x and y

These variables are vectors that contain the values we want to plot.

The length of the vectors must be the same.
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Elementary graphics Scatter plots

How to save plot

Alternatively, we can redirect the output from screen to the file.

We can use the functions

pdf() Vector pdf format, best choice when used with pdflatex
svg() Vector svg format, easily resizable.
postscript() Vector postscript format ps, easily resizable.
png() Bitmap format with high resolution, does not resize.
jpeg() Compressed bitmap format, does not resize.
bmp() High resolution bitmap format, does not resize.
tiff() High resolution bitmap format, does not resize.
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Elementary graphics Scatter plots

Options for saving the graphs

filename Name of the saved file, with full path if necessary.
width Width of the resulting graph, default value 7 in.
height Heigth of the resulting graph, default value 7 in.
res resolution of the picture, applicable for bitmap formats, default

72 dpi.
units Units of measure.
bg Background colour.
fg Foreground colour.
family The fonts used (default Helvetica).
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Elementary graphics Scatter plots

Modifying the plot – dot characters

The dot character is given by value of pch argument of the plot() function

Possible values

� pch=0 ◦ pch=1 4 pch=2 + pch=3 × pch=4
♦ pch=5 O pch=6 � pch=7 S pch=8 � pch=9
⊕ pch=10 A pch=11 � pch=12 ⊗ pch=13 ∧� pch=14
� pch=15 • pch=16 N pch=17 � pch=18 • pch=19
• pch=20 ◦ pch=21 � pch=22 � pch=23 4 pch=24
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Elementary graphics Scatter plots

Modifying the plot – line type

The line type is set by the type argument of the plot() function

Possible values

p Point graph, the default value.
l Continuous line.
b Continuous line with the points.
c Parts of the continuous lines, with the points omitted.
o Parts of the continuous lines, with the points over-plotted.
h Histogram-like graph.
s stair steps graph.
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Elementary graphics Scatter plots

Modifying the plot – line style

The line style is set by the lty argument of the plot() function

Possible values

1 Solid line (default). 2 Dashed line.
3 Dotted line. 4 Dot-dashed line.
5 Long dashed line. 6 Long and short double dashed line.

The line width is set by the lwd argument of the plot() function
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Elementary graphics Scatter plots

Modifying the plot – colouring

Setting the colours we can do by

name of the colour, for example col=red
by number of the colour, for example col=636
by hexadecimal code, fo example col="#FFCC00"

The list of available colours we get as an answer of the function colors().
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Elementary graphics Scatter plots

Modifying the plot – colouring

Other colouring options are

col.axis Axis annotation colour. col.lab Axes labels colour.
col.main Main title colour. col.sub Subtitle colour.
bg Character filling color. fg Foreground colour.
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Elementary graphics Scatter plots

Modifying the plot – colouring

Colours as vectors

We can set the value of the col argument as vector.

The colours from the vector are regularly varying

We can also use the rainbow() function, with predefined colour sequence.
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Elementary graphics Scatter plots

Modifying the plot – titles and subtitles

Base R plotting functions come with an argument named main that allows adding a title to the
plot.

One can also add a subtitle, that will be positioned under the plot making use of the sub
argument.

Alternative way, how to add the title and subtitle to the graph is using the function title().
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Elementary graphics Scatter plots

Modifying the plot – adding text into the plot

We can add some texts into the plotted graph using the functions text() and mtext().

The difference text() places the given text on any position in the plotting area , mtext()
function places the text into the margins.

The function text() has two additional arguments:

location defines the x and y coordinates, where the text will be placed. The coordinates
must be submitted as the first two arguments of the function.
pos defines the position according to the actual place, 1=bottom, 2=left, 3=top and
4=right. Defining position as locator(1) enables placing the text using the mouse.
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Elementary graphics Scatter plots

Modifying the plot – axes customization

To remove the plot box we set the option axes=FALSE inside the plotting function.

New axes we add using the axes() function.

Argument of the axis() function defines the side of the plot, where the axis will be added.

As usually, the numbers define the sides 1=bottom, 2=left, 3=top and 4=right.

Let us try
1 > plot(sort(x),y[order(x)],pch=17,type="b",
2 col=30,axes=FALSE)
3 > axis (1)
4 > axis (2)

Aleš Kozubík
R programming



Elementary graphics Scatter plots

Further axes customization

We are able to:

set the number of the tick marks with specified start end end values,
modify the length and orientation of the tick marks,
rotate the tick marks labels,
custom the tick mark labels,
remove tick marks,
add the minor ticks using the Hmisc .
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Elementary graphics Scatter plots

Further axes customization–ticks marks length and orientation

The argument tck allows to modify the length and orientation of the tick marks.

Its positive value sets the marks inside the plotting area while the negative values define the
marks outside from the plotting area. The greater the absolute value, the longer the ticks. the
default value is tck=-0.05.

The rotation is enabled using thelas argument that can take one of four values:

las=0 the labels are parallel to axis (default),
las=1 all labels are horizontal,
las=2 the labels are perpendicular to axis,
las=3 all labels are vertical.
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Elementary graphics Scatter plots

Limits and scaling

The limits for the axis we can define using the optional arguments xlim and ylim of the
plot() function

The limits are submitted as vectors in the form c(start,end)

We can also transform the axes into the logarithmic scale by setting the argument log to be
equal to axis that we plan to scale.

log="x" sets the logarithmic scale to the x-axis,
log="y" sets the logarithmic scale to the y-axis and
log="xy" transforms both axis into the logarithmic scale.
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Two dual vertical axes

Example
We want to plot in the same graph two characteristics of the patients’ health condition, the
temperature and the blood pressure.

We have data of 100 patients stored in variables y and z, while the variable x contains the
sequence of the patient identifiers, numbers from 1 to 100.
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Elementary graphics Scatter plots

Two dual vertical axes

Example
We want to plot in the same graph two characteristics of the patients’ health condition, the
temperature and the blood pressure.

We have data of 100 patients stored in variables y and z, while the variable x contains the
sequence of the patient identifiers, numbers from 1 to 100.
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Elementary graphics Scatter plots

Plotting the curves

One of the many handy functions in R is curve().

It is a neat little function that provides mathematical plotting, e.g., to plot functions.

The curve() function takes, as its first argument, an R expression.

For example

curve(x^2)
curve(x^2,xlim=c(-2,2),col="red",lwd=2)

Aleš Kozubík
R programming



Elementary graphics Scatter plots

Plotting two or more curves in one plot

We use the function curve() with argument add=TRUE.

For example

curve(x^2)
curve(sqrt(x),col="red",lwd=2,add=TRUE)
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Elementary graphics Scatter plots

Adding a legend

The function legend() enables adding a legend to the plots in R.

Some of the arguments:

x,y position in the plotting area defined by coordinates in the graph,
legend vector of strings for description in the legend,
col vector of colours used in the graph„
pch vector of the mark shapes used in the graph,
lty vector of the line types used in the graph,
ncol number of columns used in the legend, default value is one column.
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Bar graphs

Bar graph presents categorical data with rectangular bars with heights or lengths proportional
to the values that they represent.
To produce the bar graphs, R uses the function

barplot(H,xlab,ylab,title, names.arg,col)

The parameters used in the function are as follows:

H is a vector or matrix containing numeric values used in bar chart,
xlabis the label for x axis,
ylabis the label for y axis,
title is the title of the bar char,
names.arg is a vector of names appearing under each bar,
col is used to give colors to the bars in the graph.
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Elementary graphics Bar graphs

Bar graphs – colouring and labels

We use these the names.arg parameter of the bar plot to assign these names to the columns

Further we define the values of the parameters

xlab and ylab for the axes names,
col and border for colouring the bars and
main to define the title of the graph

It is similar like in the case of plot() function.
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Histograms

A histogram is an approximate representation of the distribution of numerical data.

They represent the frequencies of values of a variable bucketed into ranges.

Histogram is similar to bar graph but the difference is it groups the values into continuous
ranges.

Histograms give a rough sense of the density of the underlying distribution of the data
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Elementary graphics Histograms

Histograms

Histogram can be created using the hist() function in R

hist(H,xlab,ylab,title, names.arg,col)

The parameters used in the function are as follows:

data is a vector containing numeric values used in histogram,
main indicates title of the chart,
col is used to set colour of the bars,
border is used to set border colour of each bar,
xlab is used to give description of x-axis,
xlim is used to specify the range of values on the x-axis,
ylim is used to specify the range of values on the y-axis,
breaks is used to mention the width of each bar.

Aleš Kozubík
R programming
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Pie graphs

A pie chart is a plot for a single categorical variable and it is an alternative to bar chart.

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices to
illustrate numerical proportion.

In a pie chart, the arc length of each slice (and consequently its central angle and area), is
proportional to the quantity it represents.
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Elementary graphics Pie graphs

Pie graphs

he basic syntax for creating a pie-chart using the R is:

pie(data, labels, radius, main, col, clockwise)

The meaning of the arguments:

data is a vector containing the numeric values used in the pie chart,
labels is used to give description to the slices,
radius indicates the radius of the circle of the pie chart, (value between −1 and +1),
main indicates the title of the chart,
col indicates the colour palette,
clockwise is a logical value indicating if the slices are drawn clockwise or anti clockwise.
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Elementary graphics Pie graphs

Pie graph–colours modifying

To change the colours in the graph we apply the function rainbow(), which defines the colour
palette.
Its arguments are:

n the number of colours (≥ 1) to be in the palette,
s,v the “saturation” and “value” to be used to complete the colour descriptions
start the (corrected) hue in 〈0; 1〉 at which the rainbow begins,
end the (corrected) hue in 〈0; 1〉 at which the rainbow ends,
gamma the gamma correction, for each colour, (r,g,b) in RGB space (with all values in
〈0; 1〉), the final colour corresponds to (rγ , gγ , bγ),
alpha the alpha transparency, a number in 〈0; 1〉, (0 means transparent and 1 means
opaque).

Aleš Kozubík
R programming



Elementary graphics Pie graphs

Fan plot

Useful alternative to the pie charts is fun.plot() defined in the plotrix package.

It allows to compare visually the pie sectors of the chart.

We can customize the fun plot setting the additional arguments:

max.span the angle of the maximal sector in radians. The default is to scale data so that
it sums to 2π.
ticks the number of ticks that would appear if the sectors were on a pie chart. Default is
no ticks.
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Box plot

In descriptive statistics, a box plot or boxplot is a type of chart often used in explanatory data
analysis.

Box plots visually show the distribution of numerical data and skewness through displaying the
data quartiles (or percentiles) and averages.

It is also useful in comparing the distribution of data across data sets by drawing boxplots for
each of them.
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Elementary graphics Box plots

Box plot

A boxplot is constructed of two parts, a box and a set of whiskers.

The box is drawn from the lower quartile to the upper quartile with a horizontal line drawn
inside the box to denote the median.

However, the whiskers can represent several alternative values, among the observed data:

the minimum and maximum of all of the data,
one standard deviation above and below the mean of the data,
the 9-th percentile and the 91-st percentile,
the 2-nd percentile and the 98-th percentile.

Any data not included between the whiskers should be plotted as an outlier with a dot, small
circle, or star, but occasionally this is not done.
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Elementary graphics Box plots

Box plot

third quartil

median

first quartil
whisker

whisker

lower bound

upper bound

outlier

outlier

Aleš Kozubík
R programming



Elementary graphics Q-Q plots

Q-Q plot

The quantile-quantile plot (or shortly Q-Q plot), is a graphical tool to help us assess if a set of
data plausibly came from some theoretical distribution such as a normal or exponential.

For example, if we run a statistical analysis that assumes our dependent variable is normally
distributed, we can use a normal Q-Q plot to check that assumption.

It is just a visual check, not an exact proof, but it allows us to see at-a-glance if our
assumption is plausible, and if not, how the assumption is violated and what data points
contribute to the violation.
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Elementary graphics Q-Q plots

Q-Q plot

A Q-Q plot is essentially a scatterplot created by plotting two sets of quantiles against one
another.

If both sets of quantiles came from the same distribution, the points form a roughly straight
line.

Q-Q plots take our sample data, sort it in ascending order, and then plot them against
quantiles of the suggested theoretical distribution.

The number of quantiles is selected to match the size of our sample data.
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Elementary graphics Plot combinations

More graphs in one plot

In base R we can combine the graph with mfrow and mfcol graphical parameters.

We just need to specify a vector that determines the number of rows and the number of
columns we plan to create.

The decision of which graphical parameter we should use depends on how do we want our plots
to be arranged:

mfrow the plots will be arranged by rows,
mfcol the plots will be arranged by columns.

This setting is used as argument of the par() function, that defines parameters of the
graphical device
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Descriptive sample characteristics

R programming for statistics

VI. Descriptive sample characteristics
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Descriptive sample characteristics Measures of location

The mean

The sample mean of the given set of numbers x1, x2, . . . , xn is defined by formula:

x = x1 + x2 + · · ·+ xn
n =

n∑
i=1

xi

n . (9)

In the R environment it is implemented as the mean() function and its use is very simple.
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Descriptive sample characteristics Measures of location

The mean

On the website of the Slovak central bank
https://www.nbs.sk/en/monetary-policy/macroeconomic-database we can find
macroeconomic database.

We can download for example the .csv file containing the numbers of new passenger cars
registrations in selected time period.

This file is implicitly saved as macrostat.csv.

Due to the use of comma as the decimal separator, we read the data using the read.csv2()
function.
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Descriptive sample characteristics Measures of location

The mean

To compute the mean, we have to use as.numeric() because cars[1,] gives the values in
the list format.

So to obtain the average value of the monthly registered new passenger cars (in thousands) in
years 2017-18 we can use the code:

1 cars <-read.csv2("macrostat.csv",header=FALSE ,sep=";")
2 mean(as.numeric(cars [1 ,]))
3 [1] 8.090125
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Descriptive sample characteristics Measures of location

The mean

It is often the case that the values of the statistical trait of interest are ordered in a sequence
of absolute frequencies.

In this case, we modify the relation (9) for calculating the sample mean to the form:

x = x1 · n1 + x2 · n2 + · · ·+ xk · nk
n1 + n2 + · · ·+ nk

=

k∑
i=1

xi · ni∑k
i=1 ni

. (10)

where xi ’s denote the values of the variable and ni denotes the absolute frequency of xi .

Aleš Kozubík
R programming



Descriptive sample characteristics Measures of location

The mean

In this case, we need to define a custom function to calculate the mean value.

As input values, we will specify two vectors. The first vector contains the values that the
random variable takes, and the second is a vector of their multiplicities.

Before performing the calculation according to the relation (10), it is necessary to verify that
both vectors have the same length.
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Descriptive sample characteristics Measures of location

The median

We can characterise median as the middle value if the observed values are sorted from smallest
to largest.

Formally we can say, that variable value is larger then median equals to the probability, that its
value is less then median and consequently this probability equals to 1

2 .

Having a sample of numbers x1, x2, . . . , xn the median x̃ is given as

x̃ =
{ ( n+1

2
)
-th ordered value n is odd

1
2
(( n

2
)

-th +
( n
2
)
-th ordered value

)
n is even (11)
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Descriptive sample characteristics Measures of location

Quantiles

To find the quantiles, in R is implemented the quantile() function. Without any optional
parameters it gets the minimum of the sample, the first quartile, median, the third quartile and
the maximal value of the sample.

We can illustrate it on the COVID-19 data, downloaded from the official website of the Slovak
government https://korona.gov.sk.

1 data <-read.csv("https://mapa.covid.chat/export/csv",
2 header=T,sep=";")
3 > quantile(data [,4])
4 0% 25% 50% 75% 100%
5 0 30 232 1737 15278
6 >
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Descriptive sample characteristics Measures of variability

The variation range

The variation range depends only on two values in the sample – the greatest and the smallest
values.

It is defined as the difference

R = max{x1, . . . , xn} −min{x1, . . . , xn} (12)

It is well applicable for a quick orientation on the extent of variability of a given sample.
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Descriptive sample characteristics Measures of variability

The variation range

The range() function determines the range of variation in the R language environment.

Its outputs are two values – the greatest and the smallest value in the sample.

In order to express the variation range as a single value by definition (12), we use the max()
and min() functions.
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Descriptive sample characteristics Measures of variability

Interquartile range

The interquartile range is a measure of statistical dispersion.

It is defined as the difference between the upper and lower quartiles of the data.

Assigning these quartiles as Q3 and Q1, we can express the interquartile range IQR as

IQR = Q3 − Q1. (13)
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Descriptive sample characteristics Measures of variability

Mean absolute deviation

The mean absolute deviation MAD of a dataset is the average distance between each data
point and the mean.

For the sample x1, . . . , xn, it is defined by formula

MAD = 1
n

n∑
i=1
|xi − x | . (14)
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Descriptive sample characteristics Measures of variability

Variance and standard deviation

Variance is the most popular and the most frequently used measure of the sample variation.

If we have the sample x1, . . . , xn, we define the sample variation s2 by formula

s2 = 1
n

n∑
i=1

(xi − x)2 . (15)
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Descriptive sample characteristics Measures of variability

Variance and standard deviation

In the case of the data ordered in the sequence absolute frequencies n1, . . . , nk ,
∑k

i=1 ni = n, of
the values x1, . . . , xk , we modify the formula (15) into the form

s2 = 1
n

k∑
i=1

ni (xi − x)2 . (16)
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Descriptive sample characteristics Measures of variability

Variance and standard deviation

The standard deviation is then defined as the square root from the variance, means:

s =
√

s2 =

√√√√1
n

n∑
i=1

(xi − x)2, (17)

or in the case of the ordered data set

s =
√

s2 =

√√√√1
n

k∑
i=1

ni (xi − x)2. (18)
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Descriptive sample characteristics Measures of variability

Variance and standard deviation

We must use be the var() and sd() functions carefully.

Their results are an unbiased estimates of the variance and standard deviation of the whole
population.

If we want to compute the sampling variance according to the relation (15), we have to define
our own function, which we illustrate in the following source code.
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Descriptive sample characteristics Measures of variability

Coefficient of variation

The coefficient of variation is a statistical measure of the relative dispersion of data points in a
data series around the mean.

The coefficient of variation CV is defined as the ratio of the standard deviation s to the mean x

CV = s
x . (19)

The coefficient of variation is frequently expressed as a percentage.
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Descriptive sample characteristics Skewness and kurtosis

Skewness

Skewness measures the asymmetry of the distribution or data set.

We define the skewness γ1 as

γ1 =

1
n

n∑
i=1

(xi − x)3

s3 . (20)
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Descriptive sample characteristics Skewness and kurtosis

Skewness

Depending on the value of γ1 there exist 3 types of skewness.

If γ1 > 0 we speak about positive skewness. It means that majority of the data are less than
the average.

On the other hand there are the negative skewed data, when γ1 < 0 In this case is the majority
of the values in the dataset greater than the mean.

Finally zero skewness γ1 = 0 represents the symmetric distribution of the data.
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Descriptive sample characteristics Skewness and kurtosis

Kurtosis

Kurtosis measures the sharpness of the peak in the data distribution.

We define the kurtosis γ2 as

γ2 =

1
n

n∑
i=1

(xi − x)4

s4 . (21)
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Descriptive sample characteristics Skewness and kurtosis

Kurtosis

Similarly like in the case of skewness, here are also three types of kurtosis.

If γ2 = 3 we speak about mesokurtic distribution. The value γ2 is compared with 3, because
the kurtosis of the normal distribution equals 3. So we compare the kurtosis of the sample with
the Gaussian curve.

In the case γ2 < 3 is the distribution more flat than normal distribution and we speak about
platykurtic distribution.

In the opposite case, when γ2 > 3, the analysed distribution has a greater peak in the mean
than normal distribution. This kind of distributions is said to be leptokurtic.
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Parameter estimates

R programming for statistics

VII. Parameter estimates
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Parameter estimates

Parameter estimates

One of the goals of the statistical analysis is to estimate the parameters of the original
distribution from which the random selection comes.

We distinguish two types of estimates:

the point estimates that provide the estimate of the exact value of the parameter,

confidence intervals that give the intervals, that contain the real value of the parameter
wit given probability (reported as the confidence level).
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Parameter estimates Point estimates

Point estimates

To estimate the value of the parameter we aim to choose the sample characteristic that
approximate the parameter Θ with the best quality.

The quality of the estimator is guaranteed by its properties:

Unbiased estimate of the parameter θ is such estimate T that equality E (T ) = θ holds.

Consistent estimate can be characterised by increasing accuracy with increasing sample
size. Formally we can write limn→∞ Tn = Θ, where indices represent the size of the
sample used in estimation.

Efficient estimate can be interpreted as the best possible estimate. The notion best
possible relies on the loss measured by the mean squared error of T . It is the value
MSE (T ) = E

(
(T −Θ)2

)
. The efficient estimate minimizes this value.
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Parameter estimates Point estimates

Point estimates

These properties influence implementation of some sample characteristics in the R language.

Let us look on the sample mean. Having the random sample X1, . . . ,Xn from the distribution
with the mean µ, we can calculate:

E (x) = 1
n

n∑
i=1

E (Xi ) = 1
nnµ = µ.

So we have shown that the average is the unbiased estimate of the mean.
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Parameter estimates Point estimates

Point estimates

Now let us look on the sample variance. Using the identity
n∑

i=1
(Xi − X )2 =

n∑
i=1

(Xi − µ+ µ− X )2 =
n∑

i=1
(Xi − µ)2 − n(X − µ)2,

we get

E

( n∑
i=1

(Xi − X )2
)

= E

( n∑
i=1

(Xi − µ)2 − n(X − µ)2
)

=
n∑

i=1
D
(
Xi
)
− nD

(
X
)

= nσ2 − nσ2
n = (n − 1)σ2,
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Parameter estimates Point estimates

Point estimates

Now let us look on the sample variance. Using the identity
n∑

i=1
(Xi − X )2 =

n∑
i=1

(Xi − µ+ µ− X )2 =
n∑

i=1
(Xi − µ)2 − n(X − µ)2,

and therefore

E
(
s2
)

= E

(
1
n

n∑
i=1

(Xi − X )2
)

= n − 1
n σ2.

So we see the sample variance is not unbiased estimate of the random variable variance.
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Parameter estimates Point estimates

Point estimates

Now let us look on the sample variance. Using the identity
n∑

i=1
(Xi − X )2 =

n∑
i=1

(Xi − µ+ µ− X )2 =
n∑

i=1
(Xi − µ)2 − n(X − µ)2,

In order to get the unbiased estimate we have to multiply the sample variance by n
n−1 . So we

obtain the unbiased estimate of the variance

s2n−1 = 1
n − 1

n∑
i=1

(Xi − X )2.

This result explains, why the function var() is implemented differently from sample variance.
It represents the unbiased estimate of the original random variable.
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Parameter estimates Point estimates

Point estimates
Methods

In this course we introduce two methods of the point estimates constructing:

the method of moments,

the method of maximal likelihood.

We will suppose, we have the sample X1, . . . ,Xn from the distribution that depends on the
vector of parameters θ = (θ1, . . . , θm).
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Parameter estimates Point estimates

The method of moments

Let us further suppose that there exist all moments νk = E
(
X k

i
)
, k = 1, . . . ,m.

The sample moments vk are defined as vk = 1
n
∑n

i=1 X k
i for k = 1, . . . ,m.

The principle of the method of moments is the equality of the theoretical and sample moments.
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Parameter estimates Point estimates

The method of moments

It means the method of moments estimator for θ1, θ2, . . . , θk denoted by θ̂1, θ̂2, . . . , θ̂k is
defined as the solution (if there is one) of the equations:

νk = vk , k = 1, . . . ,m.

Alternatively to any r -th moment we can use the r -th central moment defined as
µr = E ((X − E (X ))r ) and r -th sample central moment mr = 1

n
∑n

i=1(Xi − X )r .
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Parameter estimates Point estimates

The method of moments

We illustrate the method on the case of the uniform distribution wit parameters a and b. It is
known, that the moments of the uniformly distributed random variable X are

E (X ) = a + b
2 and D (X ) = (b − a)2

12 .

To find the estimates of the parameters a and b we have to solve the equations:

x = a + b
2 ,

s2 = (b − a)2
12 .

Aleš Kozubík
R programming



Parameter estimates Point estimates

The method of moments

Solving these equations we obtain:

a = x −
√
3s,

b = x +
√
3s.

Now we are ready to implement this estimates in R language. We take advance the previously
defined functions variation()resp. stdev().
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Parameter estimates Point estimates

The method of moments

1 > x<-runif (1000 ,1 ,3) # generating the random sample
2 > a<-mean(x)-sqrt (3)*stdev(x)
3 > b<-mean(x)+sqrt (3)*stdev(x)
4 > a
5 [1] 1.018323 #can differ for other samples
6 > b
7 [1] 3.033395 #can differ for other samples
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Parameter estimates Point estimates

The maximum likelihood method

This method is based on maximizing a likelihood function.

The point in the parameter space that maximizes the likelihood function is said to be the
maximum likelihood estimate.

Formally, let us assume that X1, . . . ,Xn are independent identically distributed random
variables from the distribution with density f (x ,θ). The joined density is the product of these
univariate density functions:

L(x1, . . . , xn; θ) =
n∏

i=1
f (x ,θ).
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Parameter estimates Point estimates

The maximum likelihood method

Just introduced function L(x1, . . . , xn; θ) is then called the likelihood function.

To get the estimates of the parameters, we maximize this function by standard process known
from the mathematical analysis.

To make the work easier, we maximize the function ln L(x1, . . . , xn; θ) instead of direct
maximization of L(x1, . . . , xn; θ).

The natural logarithm is increasing function, therefore it save the extremes and moreover
convert the product to the sum of functions.
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Parameter estimates Point estimates

The maximum likelihood method

We illustrate the method on the problem of estimating the probability p of some random
event A.

We can interpret this situation as an results of the alternative random variable that is indicator
of the random event A.

Therefore we have P (X = 1) = p and P (X = 0) = 1− p.

We perform n random trials and observe the occurrence of event A.

So we get a sample X1, . . . ,Xn of random variables with the densities f (xi , p) = pxi (1− p)1−xi ,
where xi ∈ {0, 1}.
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Parameter estimates Point estimates

The maximum likelihood method

The corresponding likelihood function has the form

L(x , p) =
n∏

i=1
pxi (1− p)1−xi = p

∑n
i=1

xi (1− p)n−
∑n

i=1
xi .

In order to state the estimate of p we will maximize the function L(x , p) with respect to the
parameter p. To do so, we take natural logarithm of the likelihood function

ln(L(x , p)) =
n∑

i=1
xi ln p +

(
n −

n∑
i=1

xi

)
ln(1− p),
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Parameter estimates Point estimates

The maximum likelihood method

We set its derivative with respect to p equal to 0:

d ln L(x , p)
dx =

∑n
i=1 xi

p −
n −

∑n
i=1 xi

1− p = 0.

Multiplying the equation by 1
n we have

x · 1p − (1− x) · 1
1− p = 0,

and its solution is
p = x .
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Parameter estimates Point estimates

The maximum likelihood method

To confirm that p = x really maximizes the likelihood function, we have to verify the second
order condition.

d2 ln L(x , p)
dx2 = −x

p + (1− x) · 1
(1− p)2 .

Substituting p = x we get (
d2 ln L(x , p)

dx2

)
p=x

= − 1
1− x < 0.

So we have the most likely estimate p = x .
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Parameter estimates Point estimates

The maximum likelihood method

We can use this approach to determine just how biased an unfair coin is.

At first we generate the sample of 0 and 1 which indicates tossing head or tail. To get sample
of unfair coin, we declare the vector of probabilities prob, how we can see in the source code:

1 > x<-sample(c(0,1),1000, replace=TRUE ,prob=c(2/3,1/3))
2 > mean(x)
3 [1] 0.304
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Parameter estimates Confidence intervals

Confidence intervals

The confidence interval can be defined as the range of estimates for an unknown parameter,
that contains the real value of the parameter with given probability.

This probability that the parameter is within the given interval is reported as the confidence
level.

The most common confidence level used in practice is 95%, but other levels (such as 90% or
99%) are also frequently used.
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Parameter estimates Confidence intervals

Confidence intervals

Formally, let X = (X1, . . . ,Xn) is a random sample from distribution that depends on the
unknown parameter θ.

A confidence interval for the parameter θ, with confidence level α, is an interval with random
endpoints (u(X); v(X)), determined by the pair of random variables u(X) and v(X), with the
property:

P (u(X) < θ < v(X)) = α.
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Parameter estimates Confidence intervals

Confidence intervals

The derivation of the confidence interval we illustrate on the normal distribution.

Let as assume, at first, that X1, . . . ,Xn is a random sample from the normal distribution
N(µ, σ2), whose standard deviation σ is known.

We want to find the confidence interval for the mean µ. Because X has the normal distribution
N
(
µ, σ2

n

)
, we have

P

(∣∣∣∣∣X − µσ√
n

∣∣∣∣∣ < c
)

= 2Φ(c)− 1, for all c > 0,
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Parameter estimates Confidence intervals

Confidence intervals

It is equivalent to

P
(

X − c σ√
n
< µ < X + c σ√

n

)
= 2Φ(c)− 1, for all c > 0.

From the last relation, it follows that the confidence interval for the mean with the confidence
level α = 2Φ(c)− 1 has the form (

X − c σ√
n

; X + c σ√
n

)
.

If we take in account, that c = Φ−1
(

α+1
2
)
, we can write the confidence interval in the form(

X − Φ−1
(
α + 1
2

)
σ√
n

; X + Φ−1
(
α + 1
2

)
σ√
n

)
.
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Parameter estimates Confidence intervals

Confidence intervals

We use the quantile function qnorm() to find the bounds of the confidence interval.

1 x<-rnorm (100 ,1,2) # we generate some sample
2 > n<-length(x)
3 > sample.mean <-mean(x)
4 > sample.sd <-2 # standard deviation is known
5 > alpha <-0.95 # seting the confidence level 95\%
6 > c<-qnorm ((alpha +1)/2,0,1)
7 > margin <-c* sample.sd/sqrt(n)
8 > lower.bound <-sample.mean -margin
9 > upper.bound <-sample.mean+margin

10 > print(c(lower.bound ,upper.bound ))
11 [1] 0.8149884 1.5989740
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Parameter estimates Confidence intervals

Confidence intervals

Now let us see, how is the confidence interval changed, if the standard deviation is unknown.

Then we have to use the unbiased estimate of the standard deviation s2 = 1
n−1

∑n
i=1(X −Xi )2,

s =
√

s2. Then the random variable

T = X − µ
s
√

n,

follows the Student’s t-distribution with n − 1 degrees of freedom. The confidence interval is
then given (

X − c s√
n

; X + c s√
n

)
.
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Parameter estimates Confidence intervals

Confidence intervals

The value c is the corresponding quantile of the Student distribution, so we apply the qt()
function in R.

1 > n<-length(x) # we use previously generated sample
2 > sample.mean <-mean(x)
3 > sample.sd <-sd(x) # estimate of the standard deviation
4 > alpha <-0.95
5 > c<-qt(( alpha +1)/2,df=n-1)
6 > margin <-c* sample.sd/sqrt(n)
7 > lower.bound <-sample.mean -margin
8 > upper.bound <-sample.mean+margin
9 > print(c(lower.bound ,upper.bound ))

10 [1] 0.8118763 1.6020861
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Parameter estimates Confidence intervals

Confidence intervals

Let us now look at the confidence interval for the variance of the normal distribution.

If s2 is the unbiased estimate of the variance, then the random variable

Y = (n − 1)s2
σ2

=
∑n

i=1(xi − x)2

σ2
=

n∑
i=1

(
xi − x
σ

)2

follows the χ2(n − 1) distribution.
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Parameter estimates Confidence intervals

Confidence intervals

For the confidence interval we get

P(c1 < χ2 < c2) = α

P
(

c1 <
(n − 1)s2

σ2
< c2

)
= α

P
(
σ ∈

(
(n − 1)s2

c2
; (n − 1)s2

c1

))
= α,

where c1 and c2 are the critical values of the χ2(n − 1) distribution.
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Parameter estimates Confidence intervals

Confidence intervals

When computing, we have to respect that χ2 distribution is not symmetric, what is important
for stating the critical values c1 and c2.

1 > n<-length(x) # the sample already generated sooner
2 > sample.var <-var(x)
3 > c1<-qchisq (1-( alpha +1)/2,df=n-1)# consequent of asymmetry
4 > c2<-qchisq (( alpha +1)/2,df=n-1)# consequent of asymmetry
5 > lower.bound <-sample.var*(n-1)/c2
6 > upper.bound <-sample.var*(n-1)/c1
7 > print(c(lower.bound ,upper.bound ))
8 [1] 3.056626 5.350767
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Parameter estimates Confidence intervals

Confidence intervals

As the last example, we will show the confidence interval for the probability of a random event.

The unbiased estimate of the probability p of a random event occurring is p̂ = m
n , where m is

the number of occurrences of the observed event in a series of n random trials.

We know, that E (p̂) = p and D (p̂) = pq
n , where q = 1− p.

The approximative equality pq
n ≈

p̂q̂
n holds for the large n.
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Parameter estimates Confidence intervals

Confidence intervals

Therefore the random variable
Z =

m
n − p√

p̂q̂
n

follows the standardized normal distribution N(0, 1). Then we can write the confidence interval
for the probability p with confidence level α as(

p̂ − Φ−1
(
α + 1
2

)
·
√

p̂q̂
n ; p̂ + Φ−1

(
α + 1
2

)
·
√

p̂q̂
n

)
.
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Parameter estimates Confidence intervals

Confidence intervals

Example
Suppose 250 randomly selected people are surveyed to determine if they own a tablet. Of the
250 surveyed, 98 reported owning a tablet. Using a 95% confidence level, compute a
confidence interval estimate for the true proportion of people who own tablets.
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Thanks for your attention.

R programming for statistics

Aleš Kozubík
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